
 ACL
Cancer Research UK

Advanced Computation Laboratory,
Cancer Research UK

44 Lincoln's Inn Fields
London WC2A 3PX

Tel: 020 7269 3627 Fax: 020 7269 3186
.

CREDO-2004-006

Generic Data Access for Tallis

Tony Rose

Creation Date 12 May 2004
Last Modification 27 May 2004
Revision 61
Version e.g. 1
Circulation e.g. unrestricted
Status e.g. unreviewed

1. Introduction ___ 2
1.1 Pre-requisites ___ 2
2. The General Solution ___ 3
2.1 The XML Schema__ 3
2.2 The Database___ 3
3. A Worked Example ___ 3
3.1 The XML Instance Document _____________________________________ 3
3.2 Associating the process description with the XML instance document ______ 8
4. Summary ___ 8
Appendix A: The PROforma File ____________________________________ 10
Appendix B: The XML Instance Document ____________________________ 12
Appendix C: The XML Schema______________________________________ 13

 ACL CREDO Document

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

1. Introduction

This document describes a generic approach to data access from Tallis. It builds
on the framework described in CREDO-2003-021 (“A Generic Data Access
Framework for Tallis”) but extends it in a number of critical ways:

1. The framework now supports enactment through both the Tallis Tester and
through the Web Components (browser interface);

2. SQL prepared statements are now used in place of SQL statements;

3. The syntax used to map between Tallis dataitems and SQL has been greatly
simplified (partially as result of the above);

4. Instead of actionHandlers and enquiryHandlers we now have four distinct
handler types:

o enquiryReaders

o enquiryWriters

o decisionWriters

o actionWriters

This list of handlers is by no means exclusive: if a need for a further type of
handler is identified, it can be implemented. But at present the above four cover
the vast majority of situations encountered thus far. Also, it is hard to imagine a
practical use for some of the other combinations, e.g. when would anyone ever
need a decisionReader? What function could an actionReader perform that
couldn’t be better expressed by an enquiryReader?

Nonetheless, the set is inherently extensible, and if a requirement is identified
then others can be implemented. Moreover, the basic functionality expressed by
each can also be extended: at present their behaviour is very database-centric –
i.e. they assume that data access is to and from a database. This is likely to
evolve, as other types of data access become relevant, e.g. to online medical
calculators, or to other knowledge bases, software components, etc.

To get maximum value from this document, the reader may wish to familiarise
themselves with CREDO-2003-021, as that covers much of the basic concepts
and background material which will not be repeated here.

1.1 Pre-requisites

In order to use the framework described in this document, you will need the
following:

1. A version of Tallis that supports DB access. See the Tallis download site for
details.

ACL – CREDO Document Page 2 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

2. Some knowledge of XML. You will need to understand the XML schema
described in Section 2, and be able to create an XML instance document that
conforms to this schema.

3. Some knowledge of SQL. In order to interact with a database, you will need
to compose statements that can be interpreted by that database. In most
cases this will be SQL.

2. The General Solution

The basic idea behind the solution is to use XML files to describe the mapping
between proforma dataitems and the external resources they represent in a
given local context. This is best illustrated by an example. In our case, we have
chosen as our application a simple, informal process for assessing whether
someone has a cold or flu. This process description does not contain any serious
clinical content, but it does exercise the four handler types outlined above.

The process description content (i.e. the proforma source file), along with all the
other associated resources (i.e. the schema definition and the XML instance
document) are listed in the appendices.

2.1 The XML Schema

The first thing the user has to do is to create an XML instance document that
represents the mapping between the proforma dataitems in the process
description and the SQL statements that will perform the necessary database
interaction (see Appendix B). This instance document must conform to the XML
schema (see Appendix C).

2.2 The Database

For tutorial purposes, we have built a simple MS Access database to support this
process description. This database consists of two tables: ‘PatientData’, which
contains some simple patient information (patient ID, patient’s name, symptoms,
etc.) and ‘Decisions’, which contains the results of the clinical decisions made
when running the process description.

3. A Worked Example

3.1 The XML Instance Document

As mentioned above, the first step is to produce an XML instance document that
describes the mapping between our proforma dataitems and the fields in our
database. This involves the specification of values for the following schema
elements:

1. the database (i.e. the parameters needed to connect to the database)

2. the task handlers (i.e. the set of enquiryReaders, enquiryWriters,
decisionWriters, actionWriters relevant to the process description)

ACL – CREDO Document Page 3 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

3.1.1 The root element

The root element of the XML mapping file has no declared attributes but it must
possess the attributes necessary to bind it to an appropriate schema (i.e. the
namespace and schema location). In our example this element is populated as
follows:

<proformaDataMapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:noNamespaceSchemaLocation="..\proformaDataMapping.xsd">

3.1.2 The database element

The database element requires 2 attributes to be specified: url and driver.
The remaining 2 attributes (username and password) are optional.

<xs:element name="database" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="url" type="xs:string" use="required"/>
 <xs:attribute name="driver" type="xs:string" use="required"/>
 <xs:attribute name="username" type="xs:string" use="optional"/>
 <xs:attribute name="password" type="xs:string" use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:element>

In our worked example, this element is populated as follows:

<database url="jdbc:odbc:ColdOrFluDSN" driver="sun.jdbc.odbc.JdbcOdbcDriver">
 ColdOrFluDB
</database>

Note that we can have more than one database element – this is so that the
process description can refer to more than one database simultaneously if
necessary. The name of the database (“ColdOrFluDB” in the above example) is
then used in each SQL statement (see below) to refer to the appropriate
database.

3.1.3 The Prepared SQL Statement type

The preparedSQLStatementType is a complex type that represents the
content of a prepared SQL statement. It has two required attributes: dbName,
which is the name of the database to which it applies, and params, which are
used to populate the prepared statement:

<xs:complexType name="preparedSQLStatementType">
 <xs:annotation>
 <xs:documentation>An SQL prepared statement</xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="dbName" type="xs:string" use="required"/>
 <xs:attribute name="params" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>

ACL – CREDO Document Page 4 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

</xs:complexType>

An example of an instantiated prepared SQL statement is as follows:

<preparedSQLStatement dbName="ColdOrFluDB" params="patientID patientsName
symptoms">
 INSERT INTO PATIENT_DATA (PATIENT_ID, NAME, SYMPTOMS) VALUES (?, ?, ?)
</preparedSQLStatement>

When this statement is executed by the engine, the dataitems named in each of
the fields in params will be substituted with their respective values at the time of
execution. Note that in this particular example the SQL table columns (i.e.
PATIENT_ID, NAME, SYMPTOMS) have names that are similar to the
dataitems themselves, but we have chosen to use upper case to differentiate
them from the dataitems. Normally it would be prudent to use identical names
for both (to reduce the possibility of typing errors).

3.1.4 The enquiryReader element

The enquiryReader element has one required attribute: dataItem, which
specifies the proforma dataitem that this enquiryReader is designed to populate.
Optionally, we may also provide a taskName, which specifies that this
enquiryReader will only be invoked when the dataItem is being requested by a
given task (typically an associated enquiry). The enquiryReader can contain an
unbounded number of prepared SQL statements, which will be executed in order
by the engine.

<xs:element name="enquiryReader" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preparedSQLStatement" type="preparedSQLStatementType"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="dataItem" type="xs:string" use="required"/>
 <xs:attribute name="taskName" type="xs:string" use="optional"/>
 </xs:complexType>
</xs:element>

The result of each SQL query should contain only one column. If the data item is
of type text, integer, real, or Boolean, then this column should contain
only one row whose value is supplied to the data item. If the data item is of type
setof_text, setof_integer or setof_real then the result should still
contain only one column but may contain more than one row. The resulting set
of values is then assigned to the data item. In our worked example the
enquiryReader is populated as follows:

<enquiryReader dataItem="patientID">
 <preparedSQLStatement dbName="ColdOrFluDB" params="">
 SELECT (Max(PATIENT_ID)+1) FROM PATIENT_DATA
 </preparedSQLStatement>
</enquiryReader>

This means that when the dataitem patientID is requested (by any task), the
SQL statement will be executed. In this case, the SQL simply returns an integer
that is 1 greater than the last PATIENT_ID from the table PATIENT_DATA. This
value is then assigned to patientID by the Tallis engine.

ACL – CREDO Document Page 5 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

3.1.5 The enquiryWriter element

The enquiryWriter element has one required attribute: taskName, which
specifies the proforma task that this enquiryWriter is designed to handle. The
enquiryWriter can contain an unbounded number of prepared SQL statements,
which will be executed in order by the engine.

<xs:element name="enquiryWriter" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preparedSQLStatement" type="preparedSQLStatementType"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="taskName" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

In our worked example this is populated as follows:

<enquiryWriter taskName="get_symptoms">
 <preparedSQLStatement dbName="ColdOrFluDB" params="patientID patientsName
symptoms">
 INSERT INTO PATIENT_DATA (PATIENT_ID, NAME, SYMPTOMS) VALUES (?, ?, ?)
 </preparedSQLStatement>
</enquiryWriter>

This means that when the action get_symptoms enters the completed state (i.e.
all of its mandatory sources have been supplied with values), the SQL statement
will be executed. In this case the patientID, patientsName, and
symptoms will be written to the PATIENT_DATA table. Note that some of the
values required by an enquiry could actually have been populated by
enquiryReader (as is the case of patientID in our example).

3.1.6 The actionWriter element

The actionWriter element is similar to the enquiryWriter element, in that it has
one required attribute: taskName, which specifies the proforma task that this
actionWriter is designed to handle. The actionWriter can contain an unbounded
number of prepared SQL statements, which will be executed in order by the
engine.

<xs:element name="actionWriter" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preparedSQLStatement" type="preparedSQLStatementType"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="taskName" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

In our worked example this is populated as follows:

<actionWriter taskName="prescribe_painkillers">
 <preparedSQLStatement dbName="ColdOrFluDB" params="patientID">
 UPDATE PATIENT_DATA SET PILL_TAKER = TRUE WHERE PATIENT_ID = (?)
 </preparedSQLStatement>
</actionWriter>

ACL – CREDO Document Page 6 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

This means that when the action prescribe_painkillers enters the state
in_progress (i.e. its scheduling constraints, preconditions etc. have been met),
the SQL statement will be executed.

Note that actionWriters are designed to ‘fire’ when the task state becomes in
progress (rather than completed). This is because actionHandlers (and, indirectly,
enquiryReaders) are based on the principle that if a task can be performed
without requiring input from the user, then it should not be necessary to ask the
user for manual confirmation. To achieve this they must have the ability to
‘confirm themselves’, if (and only if) at least one of their SQL statements(s)
succeeds. In our example, this means that when the prescribe_painkillers
task becomes in_progress, if the PATIENT_DATA table is successfully
UPDATED, then the actionWriter will confirm the task
prescribe_painkillers itself and the task will thus become completed.

3.1.7 The decisionWriter element

The decisionWriter element is similar to the enquiryWriter element, in that it has
one required attribute: taskName, which specifies the proforma task that this
decisionWriter is designed to handle. The decisionWriter can contain an
unbounded number of prepared SQL statements, which will be executed in order
by the engine.

<xs:element name="decisionWriter" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preparedSQLStatement" type="preparedSQLStatementType"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="taskName" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

In our worked example this is populated as follows:

<decisionWriter taskName="diagnosis">
 <preparedSQLStatement dbName="ColdOrFluDB" params="patientID DECISION_NAME
TIME_STAMP RECOMMENDATIONS SELECTION">
 INSERT INTO DECISIONS (PATIENT_ID, DECISION_NAME, TIME_STAMP,
RECOMMENDATIONS, SELECTION) VALUES (?, ?, ?, ?, ?)
 </preparedSQLStatement>
</decisionWriter>

This means that when the task diagnosis enters the completed state (i.e. it
has been confirmed and any mandatory sources have been supplied with values),
the SQL statement will be executed. Note that in this case the params list
contains a number of keywords: DECISION_NAME, TIME_STAMP,
RECOMMENDATIONS, SELECTION. These keywords correspond to particular
values that will be provided by the engine, and are defined as follows:

DECISION_NAME = A string representing name of the decision (i.e. the task
name)

TIME_STAMP = A SQL timestamp representing the current date & time

RECOMMENDATIONS = A string representing the recommended candidate(s)

ACL – CREDO Document Page 7 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

SELECTION = A string representing the selected candidate(s)

3.2 Associating the process description with the XML instance document

In comparison to the earlier version of this framework (described in CREDO-
2003-021), the changes required to the process description itself (i.e. the .pf file)
are minimal - all we need is some way of associating the .pf file with the .xml file.

For enactment via the web interface, the user just needs to add a metadata entry
to the context field of the root plan. This metadata entry should be of the form:
#METADATA DB.MappingFile=<URL>. In our example, this is populated as
follows:

 context :: '#METADATA

DB.MappingFile=file:///C:/Documents%20and%20Settings/tr/jbproject/TallisWor

kingDirectory/TestData/TestXMLMapper/TestWebDB/coldOrFlu.xml' ;

However, for enactment via the Tester, if the context field is empty then the
current directory of the local filesystem will be searched for a file of the form
<same_name>.xml, i.e. the Proforma file C:\TestWebDB\coldOrFlu.pf will by
default be associated with the XML file C:\TestWebDB\coldOrFlu.xml. This allows
users to use different XML instance documents without changing the .pf file, and
hence maintains the principle that the .xml file can depend on the .pf file but not
vice versa.

Evidently, it would be useful to apply this principle also to web enactment, but in
distributed applications the concept of “the current directory of the local
filesystem” is somewhat ambiguous (i.e. local to where – the client, the server, or
perhaps some other location?). Consequently, for web enactment, the URL for
the XML instance document must be specified using the context field of the root
plan in the .pf file.

4. Summary

This document has presented a basic framework for database access within
Tallis. It represents a significant advance on the initial version (described in
CREDO-2003-021), in particular:

1. The framework now supports enactment through both the Tallis Tester and
through the Web Components (browser interface);

2. SQL prepared statements are now used in place of SQL statements;

3. The syntax used to map between Tallis dataitems and SQL has been greatly
simplified (partially as result of the above);

4. Instead of actionHandlers and enquiryHandlers we now have four distinct
handler types:

o enquiryReaders

ACL – CREDO Document Page 8 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

o enquiryWriters

o decisionWriters

o actionWriters

The natural continuation of this work is to extend the current framework to
support interaction with other applications and resources, such as online medical
calculators (e.g. MEDAL), external knowledge bases, software components, etc.

ACL – CREDO Document Page 9 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

Appendix A: The PROforma File

/** PROforma (plain text) version 1.3.37.2 **/
plan :: 'coldOrFlu' ;
 caption ::"coldOrFlu";
 context :: '#METADATA

DB.MappingFile=file:///C:/Documents%20and%20Settings/tr/jbproject/TallisWorkingDi
rectory/TestData/TestXMLMapper/TestWebDB/coldOrFlu.xml' ;
 component :: 'get_symptoms' ;
 number_of_cycles ::1;
 ltwh :: 147,18,42,36;
 component :: 'diagnosis' ;
 schedule_constraint :: completed('get_symptoms') ;
 number_of_cycles ::1;
 ltwh :: 342,18,36,36;
 component :: 'prescribe_painkillers' ;
 schedule_constraint :: completed('diagnosis') ;
 number_of_cycles ::1;
 ltwh :: 518,18,36,36;
 component :: 'discharge_patient' ;
 schedule_constraint :: completed('diagnosis') ;
 number_of_cycles ::1;
 ltwh :: 518,18,36,36;
end plan.

action :: 'discharge_patient' ;
 caption ::"discharge patient";
 precondition ::result_of(diagnosis) = COLD OR result_of(diagnosis) =
WORKITIS;
 procedure ::patientsName # " has been discharged.";
end action.

decision :: 'diagnosis' ;
 caption ::"diagnosis";
 candidate :: 'WORKITIS' ;
 recommendation ::netsupport(diagnosis, WORKITIS) >= 1;
 candidate :: 'COLD' ;
 argument :: for,symptoms includes sore_throat attributes
 argument_name :: 'symptoms includes sore_throat ' ;
 end attributes
 ;
 recommendation ::netsupport(diagnosis, COLD) >= 1 AND
netsupport(diagnosis, FLU) < 1 ;
 candidate :: 'FLU' ;
 argument :: for,symptoms includes high_temperature OR symptoms
includes shivers attributes
 argument_name :: 'symptoms includes high_temperature OR symptoms
includes shivers ' ;
 end attributes
 ;
 recommendation ::netsupport(diagnosis, FLU) >= 1;
end decision.

action :: 'prescribe_painkillers' ;
 caption ::"prescribe painkillers";
 precondition ::result_of(diagnosis) = FLU;
 procedure ::patientsName # " has been added to the list of pill poppers.";
end action.

enquiry :: 'get_symptoms' ;
 caption ::"get symptoms";
 source :: 'patientID' ;
 mandatory :: no ;

ACL – CREDO Document Page 10 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

 source :: 'patientsName' ;
 source :: 'symptoms' ;
end enquiry.

data :: 'patientID' ;
 type :: integer ;
end data.

data :: 'patientsName' ;
 type :: text ;
 caption ::"What is the patient's name?";
end data.

data :: 'symptoms' ;
 type :: setof_text ;
 caption ::"What symptoms does the patient have?";
 range ::"high_temperature","shivers","sore_throat","nothing";
end data.

ACL – CREDO Document Page 11 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

Appendix B: The XML Instance Document

<?xml version="1.0" encoding="UTF-8"?>
<!--Sample XML file generated by XMLSPY v5 rel. 3 U (http://www.xmlspy.com)-->
<proformaDataMapping xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="..\proformaDataMapping.xsd">
 <database url="jdbc:odbc:ColdOrFluDSN"
driver="sun.jdbc.odbc.JdbcOdbcDriver">ColdOrFluDB</database>
 <enquiryReader dataItem="patientID">
 <preparedSQLStatement dbName="ColdOrFluDB" params="">
 SELECT (Max(PATIENT_ID)+1) FROM PATIENT_DATA
 </preparedSQLStatement>
 </enquiryReader>
 <enquiryWriter taskName="get_symptoms">
 <preparedSQLStatement dbName="ColdOrFluDB" params="patientID patientsName
symptoms">
 INSERT INTO PATIENT_DATA (PATIENT_ID, NAME, SYMPTOMS) VALUES (?, ?, ?)
 </preparedSQLStatement>
 </enquiryWriter>
 <decisionWriter taskName="diagnosis">
 <preparedSQLStatement dbName="ColdOrFluDB" params="patientID DECISION_NAME
TIME_STAMP RECOMMENDATIONS SELECTION">
 INSERT INTO DECISIONS (PATIENT_ID, DECISION_NAME, TIME_STAMP,
RECOMMENDATIONS, SELECTION) VALUES (?, ?, ?, ?, ?)
 </preparedSQLStatement>
 </decisionWriter>
 <actionWriter taskName="prescribe_painkillers">
 <preparedSQLStatement dbName="ColdOrFluDB" params="patientID">
 UPDATE PATIENT_DATA SET PILL_TAKER = TRUE WHERE PATIENT_ID = (?)
 </preparedSQLStatement>
 </actionWriter>
</proformaDataMapping>

ACL – CREDO Document Page 12 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

Appendix C: The XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 3 U (http://www.xmlspy.com) by Tgr (Cancer
Research UK) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="proformaDataMapping">
 <xs:annotation>
 <xs:documentation>Specifies a mapping between proforma data items and DB
values</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence maxOccurs="unbounded">
 <xs:element name="database" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="url" type="xs:string"
use="required"/>
 <xs:attribute name="driver" type="xs:string"
use="required"/>
 <xs:attribute name="username" type="xs:string"
use="optional"/>
 <xs:attribute name="password" type="xs:string"
use="optional"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="enquiryReader" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preparedSQLStatement"
type="preparedSQLStatementType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="dataItem" type="xs:string"
use="required"/>
 <xs:attribute name="taskName" type="xs:string"
use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="enquiryWriter" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preparedSQLStatement"
type="preparedSQLStatementType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="taskName" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="actionWriter" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="preparedSQLStatement"
type="preparedSQLStatementType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="taskName" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="decisionWriter" minOccurs="0">
 <xs:complexType>

ACL – CREDO Document Page 13 of 14 Revision 2, 14 July 2005

ADVANCED COMPUTATION LAB - CREDO-2004-006
GENERIC DATA ACCESS FOR TALLIS

 <xs:sequence>
 <xs:element name="preparedSQLStatement"
type="preparedSQLStatementType" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="taskName" type="xs:string"
use="required"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="SQLStatementType">
 <xs:annotation>
 <xs:documentation> A simple SQL statement</xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="dbName" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="preparedSQLStatementType">
 <xs:annotation>
 <xs:documentation> An SQL prepared statement</xs:documentation>
 </xs:annotation>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="dbName" type="xs:string" use="required"/>
 <xs:attribute name="params" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

ACL – CREDO Document Page 14 of 14 Revision 2, 14 July 2005

	1. Introduction
	1.1 Pre-requisites
	2. The General Solution
	2.1 The XML Schema
	2.2 The Database

	3. A Worked Example
	3.1 The XML Instance Document
	3.1.1 The root element
	3.1.2 The database element
	3.1.3 The Prepared SQL Statement type
	3.1.4 The enquiryReader element
	3.1.5 The enquiryWriter element
	3.1.6 The actionWriter element
	3.1.7 The decisionWriter element

	3.2 Associating the process description with the XML instance document

	4. Summary
	 Appendix A: The PROforma File
	 Appendix B: The XML Instance Document
	 Appendix C: The XML Schema

