
1

Cancer Research UK
Advanced Computation Laboratory

PROforma technical paper

Title: Syntax and Semantics of PROforma
Authors: David Sutton, John Fox
Version: 1.3.38
Status: Draft
Date: 26/03/2003

Summary

Describes the syntax and semantics for Proforma

© Cancer Research UK, London, UK

Please do not quote or copy.

2

Contents

1. Introduction..5
2. Lexical Grammar ...5
3. BNF Syntax..7

3.1. Assumptions and Notation...7
3.2. BNF Productions...7
3.3. Note on <yes_or_no> and <data_type> ...14

4. Type Inference Rules ...15
4.1. Type Inference Rules for an Expression E...15
4.2. Type Promotion Rules ...17
4.3. Relationship Between Declared And Inferred Types For Data Items And
Parameters. ...17

5. Scope Rules..18
5.1. Example Of Use Of Parameters...19

6. Contextual Constraints ...20
6.1. Constraints On The Use Of Task, Candidate And Parameter Names.........20
6.2. Note On Use Of Built-In Functions and Operators.21

7. Basic Concepts ...22
7.1. Guidelines, Tasks, and Data Items...22
7.2. PROforma Expressions. ...23
7.3. PROforma Assertions ..23
7.4. PROforma Values ..23
7.5. Task States ...23

8. The Abstract PROforma Engine. ...24
8.1. Guideline State ...24
8.2. Definitions ..25

8.2.1. Relationship to The PROforma Syntax..26
8.3. Public Operations ...26

8.3.1. The LoadGuideline Operation ...26
8.3.2. The RunEngine Operation ...26
8.3.3. The Operation SetEngineTime(X) ...27
8.3.4. The Operation ConfirmTask(T) ...27
8.3.5. The Operation CommitCandidates(T, <C1, …, CN>)28
8.3.6. The Operation AddDataValue(D,V) ..28
8.3.7. The Operation SendTrigger(Trig) ..29

8.4. The Operation EnactChanges...30
8.5. Operations Taking a Task Identifier As A Parameter..................................30

8.5.1. The Operation Review(T) ..30
8.5.2. The Operation Initialise(T)...31
8.5.3. The Operation Start(T) ...32
8.5.4. The Operation Discard(T) ..34
8.5.5. The Operation Complete(T) ...34
8.5.6. The Operation SetStartAt(T) ..35
8.5.7. The Operation InitialiseCandidate(C) ..36
8.5.8. The Operation ActualiseCandidate(C,T)..36
8.5.9. The Operation InitialiseGenericProperties(C)37
8.5.10. The Operation ActualiseGenericProperties(C,T)37
8.5.11. The Operation EnactAssertion(A,T)...37

3

8.5.12. The Operation InitialiseSource(S,T) ..38
8.6. Task Conditions ...38

8.6.1. InitialiseConditions(T) ...39
8.6.2. StartConditions(T)..39
8.6.3. DiscardConditions(T)...41
8.6.4. CompleteConditions(T)..42
8.6.5. ScheduledStartConditions(T) ...43
8.6.6. ScheduleConditions(T) ..44
8.6.7. CycleConditions(T) ..44
8.6.8. TerminationConditions(T) ...45

9. Evaluation of Expressions ..45
9.1. The Function Evaluate(E,T)...46
9.2. The Function EvaluateDataReference(D,T) ..47
9.3. The Function EvaluateParameter(D,T)..47
9.4. The Function EvaluateNetSupport(T,C)..49
9.5. The Function ResolveDataReference(A,T)..49
9.6. The Function ResolveTaskReference(A,T) ...50
9.7. The Condition IsAncestor(T1, T2)...51
9.8. ResolveCandidateReference(A,T) ...51

10. Properties of Components ..52
10.1. Properties Generic To All Components ...52
10.2. Properties Generic To All Tasks ..53
10.3. Properties Of Plans ...55
10.4. Properties Of Decisions ...55
10.5. Properties Of Actions...56
10.6. Properties Of Enquiries ..56
10.7. Properties Of Data Items..57
10.8. Properties Of Candidates ...57
10.9. Properties Of Arguments ...58
10.10. Properties Of Parameters ...58
10.11. Properties Of Sources...58
10.12. Properties Of Warning Conditions ...59

11. PROforma Built- in Operators ..59
11.1. Infix Operators ...59

11.1.1. Arithmetic Operators “+”, “-”,“*” ...59
11.1.2. Arithmetic Operator “/” ..60
11.1.3. Comparison Operators “>”, “<”,“>=”“=>”, “<=”, “=<”, “=”, “!=”,
“<>" 60
11.1.4. Boolean Operators “and”, “or” ..62
11.1.5. Text Concatenation Operator “#” ..62
11.1.6. Membership Operators “includes”, “include”, “oneof”.......................63

11.2. Prefix Functors ...63
11.2.1. Conditional Operator “if”...63
11.2.2. Unary Minus Operator “-” ...64
11.2.3. The functor “isknown”...64
11.2.4. Boolean Operator “not” ...65
11.2.5. Operator “count”..65
11.2.6. Operator “sum” ..65
11.2.7. Operator “max”..66
11.2.8. Operator “min”...66

4

11.2.9. Operator “nth”..67
11.2.10. Operators “is_dormant”, “is_in_progress”, “is_discarded” and
“is_completed”...67
11.2.11. Operators “in_progress_time”, “discarded_time” and
“completed_time”. ...68
11.2.12. Operator “union”..68
11.2.13. Operator “diff” ...68
11.2.14. Operator “intersect” ...69
11.2.15. Operator “abs”..69
11.2.16. Operator “exp”...69
11.2.17. Operator “ln”..70
11.2.18. Operator “sin” ..70
11.2.19. Operator “cos”..70
11.2.20. Operator “tan”..71
11.2.21. Operator “asin” ..71
11.2.22. Operator “acos”..71
11.2.23. Operator “atan” ..72
11.2.24. Operator “random”...72

12. Loading Guidelines..72
12.1. The Operation LoadGuideline(G) ..73
12.2. The Operation InstantiateTask(G,T, C) ...73
12.3. The Operation InstantiateComponent(G, CT , A).75
12.4. The Operation SetComponentAttribute(C,CP,A).....................................75
12.5. The Operation SetTaskAttribute(G,C,Att)...77
12.6. The Operation InstantiateCandidate(D,Cand)..78
12.7. The Operation InstantiateArgument(C,A) ...79
12.8. The Operation InstantiateSource(C,S) ...80
12.9. The Operation InstantiateDataItem(Def). ..81

5

Part 1: Context Free Syntax

1. Introduction

A syntactically correct PROforma guideline must conform to the BNF and lexical
grammar laid out in part I of this document. Furthermore it must conform to the
context sensitive constraints laid out in part II. Every expression must be type-correct
in the sense that its inferred type (¶4.1) is not untypeable. Furthermore the use of
identifiers within the guideline must satisfy the contextual constraints laid out in ¶6.

2. Lexical Grammar

PROforma’s BNF syntax is defined in terms of the following lexical tokens

• A reserved word is any text string that appears in double quotes in the BNF
productions set out in ¶3.2 . For example the appearance of the string
“completed” in the BNF should be taken as indicating that the lexical analyser
recognises the string completed a reserved word.

• An atom consists of either

o A text string which consists of one or more underscores or non-
whitespace alphanumeric characters and which does not begin with a
digit, e.g. pro1234_Forma, or _P.

o A pair of single quotes enclosing a sequence of zero or more characters
which may contain any character other than an unescaped single quote,
e.g. ‘pRo \’:: Ma’

Atoms are represented in the BNF by the symbol <atom>

• An integer is an optional minus sign (‘-’) followed by one or more digits.
Integers are represented in the BNF by the symbol <integer>

• A float is an optional minus sign (‘-’) followed by either
o a sequence of zero or more digits followed by a period (‘.’) followed

by one or more digits, or
o a sequence of one or more digits followed by a period (‘.’) followed

by zero or more digits.
optionally followed by a sequence consisting of one of the letters “e”, “E”,
“d”, or “D” and then one or more digits.

Floats are represented in the BNF by the symbol <float>.

6

• A double quoted string is a pair of double quote characters enclosing a
sequence of zero or more characters which may contain any character other
than an unescaped double quote, e.g. “pRo ’z”:: Ma”. Double quoted
strings are represented in the BNF by the symbol <double_quoted_string>

• White Space means any sequence of one or more spaces, newlines, carriage

returns or tabs. White space is not represented in the BNF.

• A comment is the string /** followed by any sequence of characters that does
not include the string **/ followed by the string **/. For example

/** This is a comment **/

Comments are not represented in the BNF.

7

The lexical analyser converts ASCII text into tokens by starting at the beginning of
the text and following this procedure:

1. Identify for the longest string that matches one of the lexical rules above, if
the longest string matches more than rule then use the rule that comes first in
the list above (e.g. the string completed is interpreted as a reserved word
rather than an atom because the rule for reserved words comes first).

2. If the string identified was not white space and not a comment then add the
appropriate token to the stream of tokens to be parsed by the BNF. For
example if you have recognised an atom then add <atom> to the stream of
tokens.

3. Unless the end of the text has been reached, start at the end of the string that
has just been recognised and repeat steps 1,2,3.

3. BNF Syntax

3.1. Assumptions and Notation

The Backus-Naur Form (BNF) syntax of PROforma 1.0 given in ¶3 assumes that the
ASCII text defining a PROforma guideline has been converted into lexical tokens by a
lexical analyser whose grammar is defined in ¶2.

The following notational conventions are used in the BNF syntax:

a) Roman text strings enclosed in angle brackets, e.g. <task> denote non-terminal

symbols.
b) Italic text strings enclosed in angle brackets, e.g. <atom> denote tokens

recognised by the lexical analyser that are not reserved words.
c) Text strings enclosed in double quotes represent reserved words recognized by the

lexical analyser.

The root symbol of the BNF syntax is <process>

3.2. BNF Productions

<abort_condition> ::= “abort” “::” <expression> “;”

<action_attribute> ::= <task_attribute>
<action_attribute> ::= <procedure>

<action_attribute_list> ::= <action_attribute> <action_attribute_list>

8

<action_attribute_list> ::= <empty>

<action_task >::= “action” “::” <atom> ";” <generic_attribute_list>

 <action_attribute_list> “end” “action” “.”

<argument> ::= “argument” “::” <support> “,” <expression>

 <optional_argument_attribute_list> “;”

<assertion> ::= <assignment>
<assertion> ::= <assertion> “and” <assertion>
<assertion> ::= “(“ assertion “)”

<assignment> ::= <atom> “=” <expression>

<autonomous> ::= “autonomous” “::” <yes_or_no> “;”

<candidate> ::= “candidate” “::” <candidate_name> “;”

 <generic_attribute_list> <candidate_attribute_list>

<candidate_attribute> ::= <argument>
<candidate_attribute> ::= <recommendation>
<candidate_attribute> ::= <priority>

<candidate_attribute_list> ::= <candidate_attribute> <candidate_attribute_list>
<candidate_attribute_list >::= <empty>

<candidate_name> ::= <atom>

<caption> ::= “caption” “::” <expression> “;”

<choice_mode> ::= “choice_mode” “::” <choice_mode_type> “;”

<choice_mode_type> ::= “single”
<choice_mode_type> ::= “multiple”

<complex_atom> ::= <atom> “:” <atom>

<component> ::= “component” “::” <atom> “;” <component_attribute_list>

<component_attribute> ::= <autonomous>
<component_attribute> ::= <optional>
<component_attribute> ::= <terminal_att>
<component_attribute> ::= <param_value>
<component_attribute> ::= <schedule_constraint>
<component_attribute> ::= <ltwh>
<component_attribute> ::= <number_of_cycles>
<component_attribute> ::= <cycle_until>
<component_attribute> ::= <cycle_repeat>

9

<component_attribute_list> ::= <component_attribute> <component_attribute_list>
<component_attribute_list> ::= <empty>

<constant> ::= <number>
<constant> ::= <textual_constant>

<context> ::= “context” “::” <atom> “;”

 <cycle_repeat> ::= “cycle_repeat” “::” <expression> <time_unit> “;”

<cycle_until> ::= “cycle_until” “::” <expression> “;”

<data_attribute> ::= <range>
<data_attribute> ::= <default_value>
<data_attribute> ::= <true_value>
<data_attribute> ::= <false_value>
<data_attribute> ::= <mandatory_validation>
<data_attribute> ::= <derivation>
<data_attribute> ::= <warning_condition>
<data_attribute> ::= <unit>

<data_attribute_list> ::= <data_attribute> <data_attribute_list>
<data_attribute_list> ::= <empty>

<data_item> ::= “data” “::” <data_name> “;” <data_type_definition>

 <generic_attribute_list> <data_attribute_list> “end” “data” “.”

<data_name> ::= <atom>
<data_name> ::= <complex_atom>

<data_type> ::= <atom> (must be either “text”, “integer”, “boolean”,

“datetime”, “date”, “time”, “real”, “setof_text”,
“setof_integer”, or “setof_real”)

<data_type_definition> ::= “type” “::” <data_type> “;”

<decision_attribute> ::= <task_attribute>
<decision_attribute> ::= <candidate>
<decision_attribute> ::= <source>
<decision_attribute> ::= <choice_mode>
<decision_attribute> ::= <support_mode>

<decision_attribute_list> ::= <decision_attribute> <decision_attribute_list>
<decision_attribute_list> ::= <empty>

<decision_task> ::= “decision” “::” <atom> “;” <generic_attribute_list>

<decision_attribute_list> “end” “decision” “.”

<default_value> ::= “default_value” “::” <expression> “;”

10

<derivation> ::= “derivation” “::” <expression> “;”

<description> ::= “description” “::” <expression> “;”

<directive_list> ::= <atom> “;” <directive_list>
<directive_list> ::= <empty>

<empty> ::=

<enquiry_attribute> ::= <task_attribute>
<enquiry_attribute> ::= <source>

<enquiry_attribute_list> ::= <enquiry_attribute> <enquiry_attribute_list>
<enquiry_attribute_list> ::= <empty>

<enquiry_task> ::= “enquiry” “::” <atom> “;”

<generic_attribute_list> <enquiry_attribute_list>
“end” “enquiry” “.”

<expression> ::= <atom>
<expression> ::= <complex_atom>
<expression> ::= <integer>
<expression> ::= <float>
<expression> ::= <double quoted string>
<expression> ::= “(“ <expression> “)”
<expression> ::= “result_of” “(“ <atom> “)”
<expression> ::= “Netsupport” “(“ <atom> “,” <atom> “)”
<expression> ::= “netsupport” “(“ <atom> “,” <atom> “)”
<expression> ::= <expression> “or” <expression>
<expression> ::= <expression> “OR” <expression>
<expression> ::= <expression> “and” <expression>
<expression> ::= <expression> “AND” <expression>
<expression> ::= <expression> “#” <expression>
<expression> ::= <expression> “++” <expression>
<expression> ::= <expression> “<” <expression>
<expression> ::= <expression> “<=” <expression>
<expression> ::= <expression> “=<” <expression>
<expression> ::= <expression> “>” <expression>
<expression> ::= <expression> “>=” <expression>
<expression> ::= <expression> “=>” <expression>
<expression> ::= <expression> “=” <expression>
<expression> ::= <expression> “!=” <expression>
<expression> ::= <expression> “+” <expression>
<expression> ::= <expression> “-” <expression>
<expression> ::= <expression> “*” <expression>
<expression> ::= <expression> “/” <expression>
<expression> ::= <expression> “include” <expression>
<expression> ::= <expression> “includes” <expression>
<expression> ::= <expression> “oneof” <expression>

11

<expression> ::= “-” <expression>
<expression> ::= <functor_name> “(“ <expression_list> “)”
<expression> ::= “[“ expression_list “]”

<expression_list> ::= <empty>
<expression_list> ::= <nonempty_expression_list>

<false_value> ::= “false_value” “::” <textual_constant> “;”

<functor_name> ::= <atom>

<generic_attribute> ::= <caption>
<generic_attribute> ::= <description>

<generic_attribute_list> ::= <generic_attribute> <generic_attribute_list>
<generic_attribute_list> ::= <empty>

<generic_task> ::= “task” “::” <atom> “;” <generic_attribute_list>

 <task_attribute_list> “end” “task” “.”

<goal> ::= “goal” “::” <expression> “;”

<ltwh> ::= “ltwh” “::” <integer> “,”<integer> “,”< integer> “,”< integer>“;”

<mandatory> ::= “mandatory” “::” <yes_or_no> “;”

<mandatory_validation> ::= “mandatory_validation” “::” <expression> “;”

<nonempty_expression_list> ::= <expression>
<nonempty_expression_list> ::= <expression> “,” <nonempty_expression_list>

<nonempty_parameter_list> ::= <parameter>
<nonempty_parameter_list> ::= <parameter> “,” <nonempty_parameter_list>

<number> ::= <integer>
<number> ::= <float>
<number> ::= “- ” <number>

<number_of_cycles> ::= “number_of_cycles” “::” <expression> “;”

<optional> ::= “optional” “::” <yes_or_no> “;”

<optional_argument_attribute_list> ::= <empty>
<optional_argument_attribute_list> ::= “attributes” <optional_argument_name>

<generic_attribute_list> “end” “attributes”

<optional_argument_name> ::= “argument_name” “::” <atom> “;”
<optional_argument_name> ::= <empty>

<optional_data_type_definition> ::= <data_type_definition>

12

<optional_data_type_definition> ::= <empty>

<optional_directives> ::= “directives” “::” <directive_list> “end” “directives” “.”
<optional_directives> ::= empty

<optional_parameter_attribute_list> ::= <empty>
<optional_parameter_attribute_list> ::= “attributes” <optional_data_type_definition>

<generic_attribute_list> “end” “attributes”

<param_value> ::= “param_value” “::” <assignment> “;”

<parameter> ::= <atom> <optional_parameter_attribute_list>

<parameter_declarations> ::= “parameters” “::” <nonempty_parameter_list> “;”

<plan_attribute> ::= <task_attribute>
<plan_attribute> ::= <component>
<plan_attribute> ::= <abort_condition>
<plan_attribute> ::= <terminate_condition>

<plan_attribute_list> ::= <plan_attribute> <plan_attribute_list>
<plan_attribute_list> ::= <empty>

<plan_task> ::= “plan” “::” <atom> “;” <generic_attribute_list plan_attribute_list>

 “end” “plan” “.”

<postcondition> ::= “postcondition” “::” <assertion> “;”

<precondition> ::= “precondition” “::” <expression> “;”

<priority> ::= “priority” “::” < integer> “;”

<procedure> ::= “procedure” “::” <expression> “;”

<process> ::= optional_directives plan_task top_level_component_list

<range> ::= “range” “::” <range_list> “;”

<range_list> ::= <expression>
<range_list> ::= <expression> “,” range_list

<recommendation> ::= “recommendation” “::” <expression> “;”

<schedule_constraint> ::= “schedule_constraint” “::” “completed” “(“<atom>“)” “;”

<source> ::= “source” “::” data_name “;” source_attribute_list

<source_attribute_list> ::= <source_attribute> <source_attribute_list>
<source_attribute_list> ::= <empty>

13

<source_attribute> ::= <generic_attribute>
<source_attribute> ::= <mandatory>

<support> ::= “for”
<support> ::= “against”
<support> ::= “confirming”
<support> ::= “excluding”
<support> ::= <number>

<support_mode> ::= “support_mode” “::” <support_mode_type> “;”

<support_mode_type> ::= “symbolic”
<support_mode_type> ::= “numeric”

<task> ::= <plan_task>
<task> ::= <decision_task>
<task> ::= <action_task>
<task> ::= <enquiry_task>
<task> ::= <generic_task>

<task_attribute> ::= <precondition>
<task_attribute> ::= <wait_condition>
<task_attribute> ::= <postcondition>
<task_attribute> ::= <goal>
<task_attribute> ::= <trigger>
<action_attribute> ::= <context>
<task_attribute> ::= <parameter_declarations>

<task_attribute_list> ::= <task_attribute> <task_attribute_list>
<task_attribute_list> ::= <empty>

<terminal_att> ::= “terminal” “::” <yes_or_no> “;”

<terminate_condition> ::= “terminate” “::” <expression> “;”

<textual_constant> ::= <double quoted string>
<textual_constant> ::= <atom>

<time_unit> ::= “seconds”
<time_unit> ::= “minutes”
<time_unit> ::= “hours”
<time_unit> ::= “days”
<time_unit> ::= “weeks”

<top_level_component> ::= <task>
<top_level_component> ::= <data_item>

<top_level_component_list>::=<top_level_component> <top_level_component_list>
<top_level_component_list> ::= <empty>

14

<trigger> ::= “trigger” “::” <atom> “;”

<true_value> ::= “true_value” “::” textual_constant “;”

<unit> ::= “unit” “::” textual_constant “;”

wait_condition ::= “wait_condition” “::” <expression> “;”

<warning_condition> ::= “warning_condition” “::” <constant> “,” <expression> “;”

generic_attribute_list

<yes_or_no> ::= <atom> (must be either “yes” or “no”)

3.3. Note on <yes_or_no> and <data_type>

The BNF specifies that <yes_or_no> must be an atom and there is a “side condition”
to the effect that this atom must be one of the strings “yes” or “no”.

The reason why we do not simply put in productions <yes_or_no> ::= “yes” and
<yes_or_no> ::= “no” is that this would imply that “yes” and “no” were reserved
words of the language (see ¶2) and hence could not be used in places where a
reserved word would unacceptable,. Specifically this would mean that “yes” and “no”
could not be used as names of decision candidates, which would be rather irksome.

Similarly <data_type> must be one of the atoms “text”, “integer”, “boolean”,
“datetime”, “date”, “time”, “real”, “setof_text”, “setof_integer”, or “setof_real”.
However these are not PROforma reserved words.

15

Part II: Context Sensitive Syntax

4. Type Inference Rules

The type of a PROforma <expression> E is either text, integer, real,
setof_text, setof_real, setof_integer, setof_anything,
truth_value, or untypeable and can be inferred using the rules laid out below.

An expression is type-correct iff its inferred type is not untypeable.

In the rules below italicised words in angle brackets, e.g. <atom> refer to terminal
symbols of the BNF set out in ¶3.2 and roman strings in angle brackets, e.g.
<parameter_declaration> refer to non-terminal symbols in that grammar.

4.1. Type Inference Rules for an Expression E

1. If E is of the form < atom> then
a. If E is within the scope of a <parameter_declaration> of the form

Name [“:” DataType] “;” where Name = E and where the use of
square brackets indicates that the data type is optional then

i. If DataType is absent then the type of E is text.
ii. Else the type of E is related to the DataType in the manner set

out in ¶4.3.
b. Else if there is a data item whose name is E then the type of E is

determined by the type of that data item, according to the mapping laid
out in ¶4.3.

c. Else the type of E is text.

2. Else if E is of the form <integer> then the type of E is integer.
3. Else if E is of the form <float> then the type of E is real.
4. Else if E is of the form <double_quoted_string> then the type of E is text.
5. Else if E is of the form “(” E′ “)” where E′ is an <expression> then the type

of E is the same as the type of E′.
6. Else if E is of the form “result_of” “(” <atom> “)” then the type of E is text.
7. Else if E is of the form “netsupport” “(” <atom> “,” <atom> “)”then the type

of E is integer.
8. Else if E is of the form “[” “]” then the type of E is setof_anything.
9. Else if E is of the form “[” E1 “,” … “,” En “]” where n>0 then

a. If for all i such that (1≤i≤n) the expression Ei has type text then E
has type setof_text.

16

b. Else if for all i such that (1≤i≤n) the expression Ei has type integer
then E has type setof_integer.

c. Else if for all i such that (1≤i≤n) the type of Ei is either integer or
float then the type of E is setof_float.

d. Otherwise E is of type untypeable.

17

10. Else if E is of either the form E1 Op E2 or the form Op “(“ E1 “,” … “,”En“)”

where E1 … En are <expression>s and Op is either an <infix_op> or a
<functor_name> and T1…Tn respectively are the types of the expressions
E1…En then

a. If there exists a unique type Tn+1 such that one of the allowed types for
Op (see ¶11) is (T1 ×…× Tn)→ Tn+1 then the type of E is Tn+1.

b. Else if there exist types T′1 ,…,T′n , Tn+1 such that one of the allowed
types for Op (see ¶11) is (T′1 ×…× T′n)→ Tn+1 and, for all i such that
(1≤i≤n) either T′i = Ti or else Ti can be promoted (¶4.2) to T′i then the
type of E is Tn+1. If Op has more than one type that meets this
requirement, then use the one that comes first in its list of types.

c. Else the type of E is untypeable.

4.2. Type Promotion Rules

1. integer can be promoted to real
2. setof_integer can be promoted to setof_real.
3. setof_anything can be promoted to setof_text, setof_integer

or setof_real.
4. No other type promotions are possible.

4.3. Relationship Between Declared And Inferred Types
For Data Items And Parameters.

The <data_type> that occurs in the declaration of a parameter or a data item has the
syntax

<data_type> = <atom>

with the constraint that the <atom> must be one of “text”, “integer”, “boolean”,
“datetime”, “date”, “time”, “real”, “setof_text”, “setof_integer”, or “setof_real”

The relationship between the words “text”, “integer” etc. as used in PROforma type
declarations and the types that are actually inferred for the parameters and data items
is slightly complicated in that

a) The engine treats data items and parameters declared to be “boolean” in the
same way as data items declared to be of type “text”. A “boolean” data item is
just a text data item for which the user is asked two choose between two
different strings (e.g. “yes” and “no”) when supplying a value.

b) Data items and parameters declared to be of type “date”, “datetime” or “time”
are treated by the engine in exactly the same way as if they were declared to
be of type “real”. The declared type is used as a hint to the API that the data
should be entered by the user in some date/time format and then converted to a
real number in an implementation dependent manner before being sent to the
engine.

18

In summary the relationship between the declared type for data items/parameters and
the types inferred for references to them are as follows:

Declared Type Inferred Type

Text text
Integer integer
Boolean text
Datetime real
Date real
Time real
Real real
setof_text setof_text
setof_integer setof_integer
setof_real setof_real

5. Scope Rules

The following rules define the scopes of identifiers used to name tasks, data items,
parameters, and candidates.

• The scope of a task name is global.
• The scope of a data item name is global.
• The scope of a candidate name is global.
• If a parameter name P is introduced in a <parameter_declaration> which is

part of the <task> declaration for some task named T then P may be referred to
in

o The precondition of T.
o The right hand side of an assignment in the postcondition of T.
o The definition of an argument or recommendation rule for a candidate

of T (if T is a decision).
o The left hand side of a <param_value> assignment occurring within a

<component> that instantiates T, i.e. a <component> that is of the form
“component” “::” T “;” {<component_attribute> } See the example
below.

o The right hand side of a <param_value> occurring within the definition
of a <component> of T (if T is a plan). See the example below.

If a parameter name P appears outside the scope of that parameter then it is
interpreted as denoting the string “P” rather than the parameter P (see example
below).

19

5.1. Example Of Use Of Parameters

The example below illustrates correct and incorrect use of parameter names.

plan :: Protocol35 ;
 caption :: 'Protocol35' ;
 component :: plan1 ;
 param_value :: _P = 1 ; /**legal since _P is a parameter of plan1 **/
end plan .

action :: action1 ;
 parameters :: _Q, _S, _T ;
 precondition :: _Q=1 ; /**legal since _Q is a parameter of action1**/
end action .

enquiry :: enquiry1 ;
 parameters :: _R ;
 source :: a ;
 mandatory :: yes ;
end enquiry .

plan :: plan1 ;
 parameters :: _P ;
 component :: action1 ;
 param_value :: _Q = a ; /**correct _Q is a parameter of action1 and is thus
 allowed to appear on the LHS of this
 assignment**/

 param_value :: _S = _T ; /**legal BUT _T will be taken to denote the string
 “_T” since the scope of the parameter _T does
 include the RHS of this assignment **/

 param_value :: _P = 1 ; /**illegal!! _P can appear on the RHS
 but not the LHS**/

 component :: enquiry1 ;
 param_value :: _R = _P ; /**legal _R is a parameter of enquiry1 and _Q is a
 parameter of plan1**/
end plan .

data :: a ;
 type :: integer ;
end data .

20

6. Contextual Constraints

In addition to conforming to the BNF and type system a valid PROforma guideline
must obey a set of contextual constraints. These concern the use of task names,
candidate names and built- in operators and functions.

Definition 1: a string with the syntax <task> is referred to as a task definition for a
task named T where T is the <atom> following the first occurrence of the reserved
word “::” in that string. For example the string

action :: action2 ;
end action.

is a task definition for a task named action2.

Definition 2: a string with the syntax <candidate> is referred to as a candidate
definition for a candidate named C where C is the <atom> following the first
occurrence of the reserved word “::” in that string. For example the string

candidate :: mycand ;
 recommendation :: Netsupport(decision1, mycand) >= 1 ;

is a candidate definition for a candidate named mycand.

Definition 3: a string with the syntax <component> is referred to as a component
definition for a component named C where C is the <atom> following the first
occurrence of the reserved word “::” in that string. For example the string

component :: action2 ;

is a component definition for a component named action2:

6.1. Constraints On The Use Of Task, Candidate And
Parameter Names.

1. If a plan definition contains a component definition for a component named T

then the guideline must contain exactly one task definition for a task named T.

2. If an expression of the form “result_of” “(” T “)” occurs in anywhere in a
guideline then the guideline must contain a task definition for a task named T.

3. If an expression of the form “netsupport” “(” T “,” C “)” occurs anywhere in a

guideline then the guideline must contain a task definition for a task named T

21

and that task definition must contain a candidate definition for a candidate
named C.

4. If a component definition for a component named T contains a

<param_value> assignment of the form P “=” E then the task definition for
task T must include a <parameter> declaration for the parameter P.

6.2. Note On Use Of Built-In Functions and Operators.

The type constraints laid out in ¶4.1 ensure that wherever an <infix_op> or
<functor_name> appears in an <expression> the operator or functor referred to will be
one of the PROforma built- ins listed in ¶11 and will be applied to the correct number
of arguments. Hence there is no need to apply additional contextual constraints on the
use of these operators.

22

Part III: Semantics

7. Basic Concepts

7.1. Guidelines, Tasks, and Data Items.

a) A guideline has a set of guideline components. Where no ambiguity can arise
we shall refer to these simply as components

b) We assume that there exists an infinite set of Component Identifiers. These are

abstract entities that can be used to uniquely identify components within a
guideline

c) Each guideline component is one of a Task, a Data Item or a Subcomponent.

d) A Task is one of a Generic task, a Plan, a Decision, an Enquiry, or an Action.

e) A Subcomponent is one of a Source, a Candidate, a Parameter, or a Warning

Flag.

f) The class of a component is one of data_item, generic_task, plan,
decision, enquiry, action, source, candidate, parameter, or
warning_flag. In other words the class tells you whether the component is
a Data Item, a Task, or a Subcomponent and, in the last two cases, what sort of
Task or Subcomponent it is.

g) A Guideline component has a set of named properties. The name of a

property is a text string and the value that it has for a particular component is a
PROforma value (see section 7.4). As an example each task has a property
named description whose value is a text string.

For each class of component there is a fixed set of allowable property names
and for each property name and component class there are restrictions on the
values that the property may take.

The properties of each class of component are set out in detail in ¶10.

Some of the properties of a component, such as its description, remain
constant throughout the enactment of a guideline. Others, such as its state,
change their value as enactment progresses.

Some properties are assigned initial values in the textual description of a
PROforma guideline. However other properties, such as the state of a task, are
given values by the engine.

23

7.2. PROforma Expressions.

a) A PROforma expression is a text string obeying the syntax given for
<expression> in the PROforma BNF. Where no ambiguity can arise we shall
refer to PROforma expressions simply as expressions.

b) At any given time an expression has a value. The value of the expression may

change as a guideline is executed. The value of an expression is a PROforma
value (as set out in ¶7.4).

The evaluation of expressions is explained in detail in ¶9.

c) Every expression has a type, which may be one of text, integer, real,
setof_text, setof_real, setof_anything, truth_value, or
untypeable The rules by which the type of an expression may be inferred
are described in ¶4.

7.3. PROforma Assertions

A PROforma assertion is a text string having the syntax of <assertion>

7.4. PROforma Values

A PROforma value is one of:

1. The constant unknown.
2. One of the constants true, or false.
3. One of the constants dormant, discarded, in_progress,

completed, symbolic, numeric, multiple, single, for,
against, confirming, excluding, data_item,
generic_task, plan, decision, enquiry, action,
source, candidate, parameter, or warning_flag.

4. A number (either integer or floating point).
5. A text string (which may, in some cases be a PROforma expression).
6. A Component Identifier
7. A finite sequence of PROforma values. We use angle brackets to denote

sequences, e.g. 〈1,2,3,4,5〉.

7.5. Task States

A task has a property named state, which may take the values dormant,
in_progress, discarded, or completed.

The intended meaning of these states is as follows. A task is dormant if the
PROforma engine has not yet considered executing it, a task is discarded if the

24

engine has explicitly decided not to execute it, a task is in_progress if it is
currently being executed, and a task is completed if its execution has finished.

Tasks change state when the operations such as Start (¶8.5.3), Discard (¶8.5.4) or
Complete (¶8.5.5) are performed.

8. The Abstract PROforma Engine.

In order to define the operational semantics of PROforma we give here an abstract
definition of the state of a PROforma guideline and an abstract definition of how that
state changes when various operations are performed.

The operational semantics are defined in terms of operations which change the
guideline state, conditions which may, at any given time, be true or false, and
functions which may be used to calculate a PROforma value (¶7.4).

Operations, conditions, and functions may take parameters, which are usually either
component identifiers or text strings. Operations, conditions, and functions may also
refer to the current guideline state. It might be more formally correct to insist that the
guideline state be passed as a parameter, however, in order to avoid cluttering our
notation we shall not do so in this document.

Any actual implementation of a PROforma engine must define itself in terms of the
abstract engine. In other words the data returned by any method in the engine’s API
must have a precisely defined relationship to the abstract engine’s state. And any state
changes brought about by an API function must be definable in terms of the
operations specified in the definition of the abstract engine.

The definition of the operational semantics describes six operations as being public.
These are LoadGuideline, RunEngine, SetEngineTime, ConfirmTask,
CommitCandidates, AddData The intention is that an API could be defined in terms
of just these six operations. All the other operations in the description of the engines
semantics exist solely in order to help define the public operations.

8.1. Guideline State

The state of a guideline is defined by following four data structures.

1. A Properties table, which contains the current values of the properties of the

guideline components.
2. A Changes table, which contains a set of changes that have been requested to

properties of guideline components.
3. A logical flag Exception, which is true if an abnormal event has occurred in

the processing of a guideline operation and false otherwise.
4. A real number known as the EngineTime.
5. An real number known as the RandomNum which is used to generate random

numbers.

25

Both the Properties and Changes tables have three columns; the first contains
Component Identifiers, the second property names, and the third PROforma values.
We assume that the ordering of the rows in these tables is immaterial and that neither
table may contain duplicate rows i.e. two different rows in a given table must have
different values in at least one column. 1 The operational semantics guarantees that, at
any given time the Properties table only assigns one value for a given property of a
given component.

As an illustration the, tables in Example 1 indicate that the state of the task
action1 currently has the value in_progress, and that a request has been
made to change the value of that task’s state to performed.

Properties Table

Component ID Property Value

action1 state in_progress
action1 procedure myprocedure

.

.

.

.

.

.

.

.

.

Changes Table

Component ID Property Value

action1 state performed

Example 1

.

In the sections that follow we shall explain how rows get added to the tables and what
the intended meanings of those rows are.

8.2. Definitions

Definition 4: The Task Set of a guideline is the set Component Identifiers identifying
tasks. More formally it is the set of all component identifiers C such that

1 Mathematically speaking each table is a ternary relation. The Changes table is a subset of C×P×V
and the Properties table is a function which is a subset of (C×P)→V where C is the set of component
identifiers, P is the set of property names, and V is the set of PROforma values.

26

(C,class,T) appears in the Properties Table where T is one of generic_task,
plan, enquiry, decision, or action.

Definition 5: A Task ID is a Component Identifier that is a member of the guideline’s
Task Set.

Definition 6: The terms Data Item Id, Candidate Id, Source Id, Parameter Id, and
Warning Flag Id refer to component identifiers and are defined in an analogous
manner to the term Task Id.

8.2.1. Relationship to The PROforma Syntax

The initial state of the guideline is related to its representation in PROforma syntax by
the description of the LoadGuideline Operation, which is given in ¶12.1.

8.3. Public Operations

An Operation is a process which can change the state of the guideline and which may
take parameters.

This section lays out the public operations that the API to an implementation of
PROforma must make available to external systems. Sections ¶8.4 and ¶8.5
describes private operations used in the definition of the public operations.

In the following sections each operation, condition, and function referred to in the
operational semantics is given a definition which is intended to precisely specify what
it does by reference to the guideline state, and may be given a more informal
description.

8.3.1. The LoadGuideline Operation

The LoadGuideline operation takes one parameter which is a text string obeying the
syntax of <guideline> in the PROforma BNF. It is fully defined ¶12.1.

8.3.2. The RunEngine Operation

Parameters: none

Description:

The Engine Cycle is the basic means by which enactment of a PROforma guideline
proceeds. Its definition refers to two operations Review and EnactChanges which are
respectively defined in ¶8.5.1 and ¶8.4.

27

Definition:

1. Set RandomNum to real value in the range 0 to 1 inclusive. We do not define
how this value is chosen but the intention is that it should be generated in a
pseudo-random manner.

2. For every task identifier T in the guideline’s task set, perform the suboperation
Review(T).

3. If the Changes table is empty then stop, otherwise perform the EnactChanges
suboperation.

4. If the Exception flag is true then stop, otherwise repeat again from step 1.

Note: in step 1 we do not specify the order in which tasks are Reviewed . However
the definition of the engine’s operational semantics in fact ensures that the state of the
guideline after an engine cycle has been performed does not depend on the order in
which tasks are Reviewed during that engine cycle.2

8.3.3. The Operation SetEngineTime(X)

Parameters:

• X is a real number.

Description:

Update the EngineTime. Note that performing this operation is the only way to
change the Engine Time. An application that wishes events to take place in “real”
time must therefore make sure that the SetEngineTime method is performed before
every invocation of RunEngine and that the time it sets is as close to the “real” time as
possible.

Definition:

1. Set the EngineTime to X.

8.3.4. The Operation ConfirmTask(T)

Parameters:

• T is a task identifier.

Desciption:

The API performs the ConfirmTask operation when it has received confirmation from
an external agent that a given task has actually been performed.

2 I shall not prove this assertion in this document, but it is, I hope not to difficult to see that it is true.

28

Definition:

1. If the Properties Table contains a row (T, confirmed, V) for some V then
remove that row.

2. Add (T, confirmed, true) to the Properties table.

8.3.5. The Operation CommitCandidates(T, <C1, …, CN>)

Parameters:

• T is a task Identifier, which should identify a decision
• <C1, …, Cn> is a sequence of Component identifiers, each of which should

identify one of the decision’s candidates.

Description:

An API performs the CommitCandidates operation when an external agent indicates
that it wishes to commit to one or more candidates of a decision.

Definition:

1. If the Properties Table contains a row (T, result, R) for some R then remove

that row.

2. If the properties table contains (T, choice_mode, multiple) then add

(T,result, 〈C1, …, Cn〉) to the Properties table, else if n=1 then add
(T,result, C1) to the Properties table.

3. Perform ConfirmTask(T)

8.3.6. The Operation AddDataValue(D,V)

Parameters:

• D is a component identifier identifying either a data item or a parameter.
• V is a PROforma value.

Definition:

1. If there is a value V′ such that the Properties table contains the row
(D,value,V′) then remove that row.

2. Add the rows (D,value,V) and (D,requested,false) to the Properties
table.

29

3. If there is an expression E such that the Properties table contains
(D,mandatory_validation, E) then remove any row of the form
(D,mandatory_validation_activated, V) from the the Properties
table and replace it with (D,mandatory_validation_activated, V′)
where V′=Evalutate(E,R) and R is the component identifier of the root plan of
the guideline.

4. If there is a sequence of component identifiers 〈W1, … , Wn〉 such that the
Properties table contains (D,warning_conditions, 〈W1, … , Wn〉) then
for each I such that i ≤i≤n :

a. Find the unique expression E such that the Properties table contains
(Wi, expression, E)

b. Remove any row of the form (Wi, activated, V) from the the
Properties table and replace it with (Wi,activated, V′) where
V′=Evalutate(E,R) and R identifies the root plan of the guideline.

c. Perform ActualiseGenericProperties(W,R) where R is the component
identifier of the root plan of the guideline.

8.3.7. The Operation SendTrigger(Trig)

Parameters:

• Trig is a text string

Desciption:

Set trigger_active property to true for all tasks with the specified trigger
whose parent plans are in progress.

Definition:

For each task identifier T such that the Properties Table contains
(T, trigger, Trig) and there exists a task identifier P such that the Properties
table contains (T,parent_plan,P) and (P,state,in_progress) : add
(T,trigger_active, true) to the Properties table.

30

8.4. The Operation EnactChanges

Parameters: none

Description:

The EnactChanges operation performs the changes that get requested during the
performance of the RunEngine operation described in ¶8.3.2 .

Definition:

1. For every row in the Changes table:

a. Let (C,P,V) denote the values in the Component ID, Property, and
Value columns of that row.

b. If there exists a value V′ such that the Properties table contains the
row (C,P, V′) then remove that row.

c. If (C,P,V) is the only row in the Changes table that specifies a

new value for property P of component C then add (C,P,V) to the
Properties table.

d. Otherwise, i.e. if there exists a value V′′ such that V′′ ≠ V and the
Changes table contains (C,P, V′′), then set the Exception flag to
true and add (C,P,unknown)to the current properties table.

2. Empty the Changes table.

8.5. Operations Taking a Task Identifier As A Parameter

8.5.1. The Operation Review(T)

Parameters:

• T is a task identifier.

Description:

The RunEngine operation (¶8.5.1) performs the Review operation for each task in the
guideline in order to determine what that task should do.

The definition of Review(T) refers to operations Initialise, Start, Discard, and
Complete which are defined in sections 8.5.2,8.5.4, 8.5.5, and 8.5.3, and to the
conditions InitialiseConditions, StartConditions , DiscardConditions , and

31

CompleteConditions which are defined in sections8.6.1, 8.6.2, 8.6.3 and Error!
Reference source not found.8.6.4
Definition:

1. If InitialiseConditions(T) is true then perform Initialise(T)
2. Else if StartConditions(T) is true then perform Start(T)
3. Else if DiscardConditions(T) is true then perform Discard(T)
4. Else if CompleteConditions(T) is true then perform Complete(T)
5. Else do nothing.

8.5.2. The Operation Initialise(T)

Parameters:

• T is a task identifier.

Definition:

1. Add (T, state, dormant) to the Changes table.

2. Add (T, cycle_count, 0) to the Changes table.

3. Add (T, start_at, unknown) to the Changes table.

4. Add (T, trigger_active, false) to the Changes table.

5. Add (T,nbr_cycles_value,unknown) to the Changes table.

6. Perform InitialiseGenericProperties(T,T).

7. If the Properties table contains a row (T, parameters, <P1 ,…, PN>) then

for each Pi (1≤i≤N):
o Add (Pi,value,unknown) to the Changes table.
o Perform InitialiseGenericProperties(Pi,T).

8. If the Properties table contains (T,class,decision) then:

a. Add (T,result,unknown) to the Changes table.
b. If the Properties table contains a row (T, candidates, <C1 ,…, CN>)

then for each Ci (1≤i≤N) perform the operation InitialiseCandidate(Ci).

9. If the Properties table contains (T,class,action) then:
a. Add (T,actual_procedure,unknown) to the Changes table.

32

8.5.3. The Operation Start(T)

Parameters:

• T is a task identifier.

Description:

The Start operation sets a task’s state to in_progress, increments its
cycle_count, evaluates its parameters and initialises various other properties of
the task such as its sources.

It is important that to note that parameter values are evaluated within the scope of the
task’s parent. This is because parameter values are a property of the parent plan rather
than the task itself and it allows a parameter value assignment to refer to the
parameters of the parent plan.

Definition:

1. Add (T, state, in_progress) to the Changes table.

2. Add (T, start_at, unknown) to the Changes table.

3. (T,in_progress_time, EngineTime) to the Changes table.

4. If the Properties table contains a row (T, cycle_count, N) then add

(T,cycle_count,N+1) to the Changes table.

5. If the Properties table contains a row (T, parameters, <P1 ,…, PN>)
then for each Pi (1≤i≤N):

o If there exists an expression E and a component identifier CP

such that the Properties table contains the rows
(Pi,expression,E) and (T,parent_plan,CP) then let
V=Evaluate(E,CP) and add (Pi,value,V) to the Changes table.

o Otherwise add (Pi,value,unknown) to the Changes table.
o Perform ActualiseGenericProperties(Pi,T).

6. If there exists an expression E such that the Properties table contains
the row (T,nbr_cycles_expression,E) and there does not exist a real
number R such that the properties table contains
(T,nbr_cycles_value,V) then:

o Let V=Evaluate(E,T) and add (T,nbr_cycles_value,V) to the

Changes table.

33

7. Perform the operation ActualiseGenericProperties(T,T).

8. Add (T, confirmed, false) to the Changes table.

9. If the Properties table contains (T, class, enquiry) and
(T,sources,<S1,…,SN>) then, for each Si perform the operation
InitialiseSource(Si) as define in ¶8.5.12.

10. If the Properties table contains (T, class, decision) and

(T,sources,<S1,…,SN>) then, for each Si :

o If the properties table contains a row (Si, data_item, D)
where D is a component identifier and also contains a row
(D,value,unknown) then perform the operation
InitialiseSource(Si) as defined in ¶8.5.12.

o If the Properties table contains a row

(T,candidates,<C1,…,CN>) then for each Ci (1≤i≤N)
perform the operation InitialiseCandidate(Ci).

11. If the Properties table contains (T, class, decision) then

o If the Properties table contains (T,confirmatory,false):

• Find the identifiers of recommended candidates of T
(if any). The definition of a “recommended” candidate
is given below.

• If there are one or more recommended candidates then
let C be the identifier of the recommended candidate
with the highest netsupport (if there is more than one
candidate with this netsupport value then pick the one
with the highest priority). Netsupport is calculated
using the function EvaluateNetSupport defined in
¶9.4.

• Add (T,result,C) to the Changes table.
o Otherwise add (T,result,unknown) to the Changes table

12. If the Properties table contains (T, class, action) then

o If the Properties table contains a row (T, procedure,E)where E

is a PROforma expression then let V=Evaluate(E,T) as defined
in ¶9.1, and add the row

 (T, actual_procedure, V)

to the Changes table.

o Else add (T, actual_procedure, unknown) to the Changes table.

34

Definition of a Recommended Candidate:

A candidate identifier C identifies a recommended candidate of task T iff there exists
an expression E and a sequence of candidate identifiers 〈C1, …,Cn〉 such that:

o The Properties table contains (T,candidates, 〈C1, …,Cn〉) and
(C,recommendation,E) and

o Evaluate(E,T)=true (see ¶9.1), and
o There exists an i such that (1≤i≤n) and Ci = C.

8.5.4. The Operation Discard(T)

Parameters:

• T is a task identifier.

Definition:

1. Add (T,state,discarded) to the Changes table.
2. Perform the operation ActualiseGenericProperties(T,T).
3. (T,discarded_time, EngineTime) to the Changes table.

8.5.5. The Operation Complete(T)

Parameters:

• T is a task identifier.

Definition:

1. Add (T,state,completed) to the Changes table.

2. (T,completed_time, EngineTime) to the Changes table.

3. If there exists an <assertion> A such that the Properties table contains

(T,postcondition,A) then perform EnactAssertion(A,T), as defined in
¶8.5.11.

4. If CycleConditions(T) is true then perform SetStartAt(T)

5. If CycleConditions(T) is not true then add (T,start_at, unknown) to

the Changes table.

35

6. If the Properties Table contains a row (T,sources,<S1,…,SN>) then, for
each Si such that the Properties table contains a rows (Si, data_item, D)
and (D,requested,true) and (D,default_value, V) :

• If V≠unknown then add the rows (D,value, V) and

(D,requested,false) to the Changes table.

7. If the Properties table contains (T,class,decision) and
(T,confirmatory,false) then

a. Let C1,…,Cn be the recommended candidates of T (see ¶8.5.3).

b. If the Properties table contains (T,choice_mode,multiple)

then add the Row (T, result, 〈C1,…,Cn〉) to the Changes Table.

c. Otherwise add (T, result, 〈Ci 〉) to the Changes Table where
C1 is the identifier of the recommended candidate with the highest
netsupport (if there is more than one candidate with this netsupport
value then pick the one with the highest priority). Netsupport is
calculated using the function EvaluateNetSupport defined in ¶9.4.

Note: the definition of Complete Conditions (¶8.6.4) ensures that a
decision that completes must have at least one recommended
candidate.

8. If the Properties table contains (T,class,decision) and also contains a

row (T, candidates, <C1 ,…, CN>) then for each Ci (1≤i≤N) perform
the operation ActualiseCandidate(Ci,T)

8.5.6. The Operation SetStartAt(T)

Parameters:

• T is a component identifier identifying a task.

Description:

Sets the time at which a cyc ling task should restart.

Definition:

• If there exists an expression E and a text string U such that the Properties table

contains (T,cycle_interval, E) and (T,cycle_interval_units, U)
then

a. Let M = 1000 if U= “seconds”, 1000*60 if U= “minutes”,

1000*60*60 if U= “hours”, 1000*60*60*24 if U= “days”, and
1000*60*60*24*7 if U= “weeks”, and 0 otherwise.

36

b. Let V = Evaluate(E,T)

c. add (T,start_at,EngineTime+V*M) to the Changes table.

• Else add (T,start_at, EngineTime) to the Changes table.

8.5.7. The Operation InitialiseCandidate(C)

Parameters:

• C is a component identifier identifying a candidate of a decision.

Description:

Sets the actual_caption and actual_description of the candidate and to
unknown. Does the same for the actual_captions and
actual_descriptions of the candidate’s arguments.

Definition:

1. Perform InitialiseGenericProperties(C).
2. If the Properties Table contains a row (C, arguments, <A1 ,…, AN>) then for

each Ai (1≤i≤N) perform the operation InitialiseGenericProperties(Ai).

8.5.8. The Operation ActualiseCandidate(C,T)

Parameters:

• C is a component identifier identifying a candidate of a decision.
• T is a task identifier identifying the decision that owns C.

Description:

Sets values for the actual_caption and actual_description of the
candidate by evaluating its caption and description. Does the same for the
actual_captions and actual_descriptions of the candidate’s arguments.

Definition:

1. Perform ActualiseGenericProperties(C).
2. If the Properties Table contains a row (C, arguments, <A1 ,…, AN>) then for

each Ai (1≤i≤N) perform the operation ActualiseGenericProperties(Ai).

37

8.5.9. The Operation InitialiseGenericProperties(C)

Parameters:

• C is a component identifier.

Description:

Sets the actual_caption and actual_description of the component to
unknown.

Definition:

1. Add (C,actual_caption,unknown) to the Changes table
2. Add (C,actual_description,unknown) to the Changes table

8.5.10. The Operation ActualiseGenericProperties(C,T)

Parameters:

• C is a component identifier.
• T is a task identifier identifying the task that owns C.

Description:

Sets values for the actual_caption and actual_description of the
component by evaluating its caption and description.

Definition:

1. If there exists an expression Ec such that the Properties table contains the row
(T,caption, Ec) then let Vc=Evaluate(Ec,T) and add
(T,actual_caption,Vc) to the Changes table

2. If there exists an expression Ed such that the Properties table contains the row

(T,description, Ed) then let Vd=Evaluate(Ed,T) and add
(T,actual_description, Vd) to the Changes table

8.5.11. The Operation EnactAssertion(A,T)

Parameters:

• A is a text string whose syntax is defined by <assertion>

38

• T is a task identifier identifying the task to which this assertion belongs

Definition:

1. If A is of the form Name = E where Name is an <atom> and E is an
<expression> then

o Let D = ResolveDataReference(Name) as defined in ¶9.5.
o Let V = Evaluate(E,T), as defined in ¶9.1.
o Add (D, value, V) to the changes table.

2. Else if A is of the form A1 “and” A2 where A1 and A2 are <assertion>s then

perform EnactAssertion(A1,T) and then perform EnactAssertion(A2,T).

8.5.12. The Operation InitialiseSource(S,T)

Parameters:

• S is a component identifier identifying a source.

Definition:

• If there exists a data item identifier D such that the Properties table contains
the row (S,data_item,D) but does not contain the row
(D,requested,true) then let R be the component identifier of the root plan
of the guideline:

o Add the row (D,requested,true) to the Changes table.

o Perform the Operation ActualiseGenericProperties(S,R).

o Perform the Operation ActualiseGenericProperties(D,R).

o If there exists a sequence of expressions 〈E1, … , En〉 such that the

properties table contains (D,range_expressions, 〈E1, … , En〉)
then add (D,range_values, 〈V1, … , Vn〉) to the changes table,
where V1 = Evaluate(E1,R) for (1 ≤ i ≤ n) and where R identifies the
root plan of the guideline.

o If there exists an expression E such that the properties table contains

(D,default_expression, E) then add (D,default_value, V)
to the changes table, where V = Evaluate(E,R).

8.6. Task Conditions

The following conditions can be true or false for a given task identifier T.

39

8.6.1. InitialiseConditions(T)

Parameters:

• T is a task identifier.

Description:

The InitialiseConditions of a task are true if it is a triggered task which has just
completed or if the CycleConditions or InitialiseConditions of the task’s parent plan
are true.

Definition:

InitialiseConditions(T) is true iff either:

1. The Properties table contains (T,state,completed) and
(T,trigger_active,true) and does not contain (T,terminal,true),
or

2. There exists a task identifier P such that the Properties table contains

(T,parent_plan P) and Either StartConditions(P) or
InitialiseConditions(P) is true.

8.6.2. StartConditions(T)

Parameters:

• T is a task identifier.

Description:
The StartConditions of a task are true iff, its parent plan (if any) is in_progress and
either; its ScheduledStartConditions, are true and it has no trigger; or it has been
triggered or has completed and needs to begin a new cycle.

Definition:

StartConditions(T) is true iff:

1. If there exists a component identifier P such that the Properties table contains

(T,parent_plan, P) then the Properties table also contains
(P,state,in_progress) , and

2. One of the following conditions hold:

a. ScheduledStartConditions(T) is true and there does not exist a string S

such that the Properties table does contains (T,trigger,S), or

40

b. The Properties table contains (T,trigger_active,true) and
(T,state,dormant), or

c. There exists a real number R such that the properties table contains
(T,start_at, R) and R is less than or equal to the current engine
time.

41

8.6.3. DiscardConditions(T)

Parameters:

• T is a task identifier.

Description:

The DiscardConditions of a task are true iff either

1. It is either dormant or in_progress and the DiscardConditions of its parent
plan are true, or

2. It is currently dormant, its parent plan is in_progress, its ScheduleConditions

are true, and either it has antecedent tasks that have all been discarded, or it
has a precondition that is not true.

Definition:

Discard Conditions(T) is true iff either of conditions 1, 2 or 3 below are true

1. There exists a component identifier P such that the Properties table contains

(T,parent_plan, P) and (P,state,in_progress), and

a. The Properties Table contains either (T,state,in_progress), or

(T,state,dormant) , or both (T,state,completed) and
(T,start_at,R) for some real number R, and either

i. DiscardConditions(P) is true, or

ii. TerminationConditions(P) is true.
Or;

2. Conditions a,b, and c below are true

a. Either:
i. There does not exists a component identifier P such that the

Properties table contains (T,parent_plan, P) or

ii. There exists a component identifier P such that the Properties
table contains (T,parent_plan, P) and
(P,state,in_progress),

And

b. The Properties table contains (T,state,dormant)

42

And

c. ScheduleConditions(T) is true and either:

i. There exists a non-empty sequence of task identifiers 〈T1,…,Tn〉
such that the Properties table contains
(T,antecedent_tasks, 〈T1,…,Tn〉) and for all i such that
1≤i≤n the Properties table contains (Ti,state,discarded);
or

ii. There exists an expression E such that the Properties table
contains (T,precondition,E) and Evaluate(E,T)≠true.

Or;

3. The Properties Table contains (T,state,in_progress) and there is an
expression E such that the Properties table contains
(T,abort_condition,E) and Evaluate(E,T)=true

8.6.4. CompleteConditions(T)

Parameters:

• T is a task identifier.

Description:

The CompleteConditions of a task are true if it is currently in progress and has been
confirmed (if it is confirmatory), and has been supplied with values for all of its
mandatory sources (if it is a decision or enquiry) and if all of its mandatory
components or at least one of its terminal components has completed (if it is a plan)
and if none of its components is in_progress or could subsequently become
in_progress or be discarded (if it is a plan).

43

Definition:

CompleteConditions(T) is true iff the following conditions are all true:

1. The Properties table contains (T,state,in_progress); and

2. If there exists a sequence of Source identifiers 〈S1,…,Sn〉 such that the

Properties table contains (T, sources, 〈S1,…,Sn〉) then for all i such that
(1≤i≤n):

o If there exists a Data Item identifier D such that the Properties table
contains (Si,data_item,D) and (Si,mandatory,true) then it
also contains (D,requested,false);

and

3. If the Properties table contains (T,confirmatory,true) then it also
contains (T,confirmed,true) ; and

4. If the Properties table contains (T,class,decision) and

(T,confirmatory,false) then T has at least one recommended candidate
((see ¶8.5.3); and

5. If the Properties table contains (T,class,plan) then
b. For all task identifiers C such that the Properties table contains

(C,parent_plan,T) :

i. The Properties table contains either (C,optional,true)
(C,state,completed) or (C,state,discarded) , and

ii. The Properties table does not contain
(C,state,in_progress) , and

iii. StartConditions(C) is false, and
iv. DiscardConditions(C) is false, and
v. InitialiseConditions(C) is false, and
vi. There does not exist a real number R such that the Properties

table contains (C,start_at,R)

8.6.5. ScheduledStartConditions(T)

Parameters:

• T is a task identifier.

Description:
The Scheduled StartConditions of a task are true iff it is currently dormant, it
ScheduleConditions are true, at least one of its antecedent tasks (if it has any) has
completed, and its precondition (if any) is true.

44

Definition:

ScheduledStartConditions(T) is true iff the following three conditions are true:

1. The Properties table contains (T,state,dormant); and

2. ScheduleConditions(T) is true and

3. If there exists a non empty sequence of task identifiers 〈T1,…,Tn〉 such that the

Properties table contains (T,antecedent_tasks, 〈T1,…,Tn〉) then there
exists an i such that 1≤i≤n and the Properties table contains
(Ti,state,completed); and

4. If there exists an expression E such that the Properties table contains

(T,precondition,E) then Evaluate(E,T)=true.

8.6.6. ScheduleConditions(T)

Parameters:

• T is a task identifier.

Description:

The ScheduleConditions of a task are true iff all of its antecedent tasks have either
completed or been discarded.

Definition:

The ScheduleConditions(T) is true iff the following conditions are true:

1. If there exists a sequence of task identifiers 〈T1,…,Tn〉 such that the Properties
table contains (T,antecedent_tasks, 〈T1,…,Tn〉) then for all i such that
1≤i≤n:

a. the Properties table contains either (Ti,state,completed) or
(Ti,state,discarded), and

b. There does not exist a real number R such that the Properties table
contains (Ti,,start_at,R).

And

2. If there exists an expression E such that the properties table contains

(T,wait_condition,E) then Evaluate(E,T)=true.

8.6.7. CycleConditions(T)

Parameters:

45

• T is a task identifier.

Description:

The CycleConditions of a task are true iff either has a cycle_until condition
which has not yet been satisfied or a nbr_cycles_value property whose value is
greater than that of its current_cycle property.

Definition:

CycleConditions(T) is true iff

1. There exist integers I,C such that the Properties table contains

(T,current_cycle ,I) and (T,nbr_cycles_value,N) and N > C ; and
2. If there exists an expression E such that the Properties table contains

(T,cycle_until,E) then Evaluate(E , T)≠true.

8.6.8. TerminationConditions(T)

Parameters:

• T is a task identifier that identifies a Plan.

Description:

The TerminationConditions of a plan are true if either it’s
termination_condition exists and evaluates true or if it has a terminal task
which has completed.

Definition:

TerminationConditions(T) is true if either

1. There is an expression E such that the Properties Table contains
(T,termination_condition,E) and Evaluate(E,T)=true, or

2. There exists a task identifier T2 such that the Properties Table contains

(T2,parent_plan,T) and (T2,state,completed) .

9. Evaluation of Expressions

In the PROforma language all expressions are “attached” to a task. If they appear in
the preconditions, postconditions, or parameter value definitions or candidate
definitions of a task then they are “attached” to that task. Expressions appearing in the

46

definition of data items are “attached” to the root plan. Hence the function Evaluate,
which returns the value of an expression, takes two parameters specifying the
expression and the task to which it is attached.

9.1. The Function Evaluate(E,T)

Parameters:

• E is a text string with the syntax <expression>
• T is a component identifier identifying the task within which the expression E

occurs.

Value: Evaluate(E,T) evaluates to a PROforma value.

Definition:

• If E is an <atom> then:
o If there is a component identifier D such that

D=ResolveDataReference(E,T) then
Evaluate(E,T)=EvaluateDataReference(D,T) as defined in ¶9.2.

o Otherwise Evaluate(E,T) = the text string E with any enclosing single

quotes removed.

• If E is a <number> then Evaluate(E,T) = the numeric value of E, i.e. the value
you get by converting the text string E to an integer or floating point number
using the usual conventions.

• If E is a <double_quoted_string> then Evaluate(E,T) = the text string E with

the enclosing double quotes removed.

• If E is of the form “(” E1 “)” where E1 is an <expression> then
 Evaluate(E,T) = Evaluate(E1,T).

• If E is of the form “result_of” “(” A “)” where A is an <atom> then
o If TA=ResolveTaskReference(A,T), as defined in ¶9.6, and there exists

a candidate identifier C such that the Properties table contains the
rows (TA,result,C) and (C,name,V) then Evaluate(E,T)=V.

o Else Evaluate(E,T)=unknown.

• Else if E is of the form “netsupport” “(” A1 “,” A2 “)” where A1 and A2 are
<atom>s then Evaluate(E,T)=EvaluateNetSupport(T1,C), as defined in ¶9.4
where T1=ResolveTaskReference(A1,T), as defined in ¶9.6, and
C=ResolveCandidateReference(A2, T1), as defined in ¶9.8.

• If E is of the form E1 Op E2 where E1 and E2 are <expression>s and Op is an

<infix_op> then Evaluate(E,T)=Fop(V1 , V2) where Vi = Evaluate(Ei ,T) for
(1≤i≤n) and Fop is the evaluation function for Op, as defined in ¶11.

47

• If E is of the form Op “(”E1 “,” … “,” En “)” where Op is a <functor_name>

and Ei is an <expression> (for each i such that 1 ≤i≤n) then
Evaluate(E,T)=Fop(T,V1 ,…, VN) where Vi = Evaluate(Ei ,T) and Fop is the
evaluation function for Op, as defined in ¶11.

• If E is a <set_enumeration> of the form “[“ E1 “,” … “,” En “]” where Ei is an

<expression> (for each i such that 1 ≤i≤n) then Evaluate(E,T) = the
sequence <Evaluate(E1,T), … , Evaluate(En,T)>.

9.2. The Function EvaluateDataReference(D,T)

Parameters:

• D is a component identifier that identifies a parameter or data item referred to
in some expression.

• T is a component identifier identifying the task to which the expression that
refers to D belongs.

Value: EvaluateDataReference(D,T) evaluates to a PROforma value.

Definition:

1. If the Properties table contains the row (D, class, parameter) then
EvaluateDataReference(D,T) = EvaluateParameter(D,T) as defined in ¶9.3.

2. Else if there exists a value V such that the Properties table contains the rows

(D,class,data_item) and (D,value,V) then EvaluateDataReference(D,T)=V.

3. Else EvaluateDataReference(D,T)=unknown.

9.3. The Function EvaluateParameter(D,T)

Parameters:

• D is a component identifier that identifies a parameter that is referred to in
some expression.

• T is a component identifier identifying the task to which the expression that
refers to D belongs.

Value: EvaluateParameter(D,T) evaluates to a PROforma value.

Description:

EvaluateParameter is used to evaluate the value of a task’s parameter. There are a
couple of subtleties to bear in mind when considering parameter evaluation. The first

48

is that the values of a task’s parameters get fixed when the task becomes
in_progress but that it is useful to be able to refer to them in the task’s
preconditions, which are evaluated while the task is still dormant. The semantics
given here mean that if a parameter is encountered during the evaluation of a
precondition then it will be given the value that it would have if the task became
in_progress at that moment. The second subtlety is that the expression that
defines the parameters value is part of the specification of the task’s parent plan, and
consequently is evaluated within the scope of that parent plan.

Definition:

1. If there exists a component identifier P and an expression E such that the
Properties table contains the rows (T,parent_plan,P), (D,expression,E) and
(T,state,dormant) then EvaluateDataReference(D,T) = Evaluate(E,P).

2. Else if there exists a value V such that the Properties table contains the rows
(D,value,V) and (T,state,in_progress) then
EvaluateDataReference(D,T)=V.

3. Else EvaluateDataReference(D,T)=unknown.

49

9.4. The Function EvaluateNetSupport(T,C)

Parameters:

• T is a task identifier
• C is a component identifier identifying a candidate

Value: EvaluateNetSupport(T,C) evaluates to an integer or to the constant
unknown.

Definition:

• If there exists a sequence 〈A1, … , An〉 such that the Properties table contains a
row (C,arguments,〈A1, … , An〉) then for all i such that(1≤i≤n) let Ei be the
unique expression such that the Properties table contains the row
(Ai,expression,Ei), let Si be the unique value such that the Properties table
contains the row (Ai,support,Si) and let Vi=Evaluate(Ei,C), then:

o If there exist i,j such that Vi= Vj=true and Si=confirming and
Sj=excluding then EvaluateNetSupport(T,C)=unknown.

o Else if there exists i such that Vi= true and Si=confirming then
EvaluateNetSupport(T,C)=9999.

o Else if there exists i such that Vi= true and Si=excluding then
EvaluateNetSupport(T,C)=-9999.

o Else EvaluateNetSupport(T,C)=W1 + … + Wn where for all i such
that(1≤i≤n):

§ If Vi= true and Si=for then Wi = 1.

§ If Vi= true and Si=against then Wi = -1.

§ If Vi= true and Si is an integer then Wi = Si.

§ If Vi≠ true then Wi = 0.

• Else EvaluateNetSupport(T,C)=unknown.

9.5. The Function ResolveDataReference(A,T)

Parameters:

• A is an <atom>
• T is a task identifier

50

Value: ResolveDataReference(A,T) evaluates to either the constant unknown or to a
component identifier, which identifies a parameter or data item.

Definition:

1. If the properties table contains rows (T, parameters, <P1, … , PN >) and
there is an A′ such A′ and A are equal if case is ignored and a Pi such that
1≤i≤n and and such that the Properties table contains (Pi,name, A′) then
ResolveDataReference(A,T) = Pi.

2. Else if there is an A′ such A′ and A are equal if case is ignored and a

component identifier D such that the Properties table contains the rows (D,
class, data_item) and (D, name, A′) then ResolveDataReference(A,T) = D.

3. Else ResolveDataReference(A,T) = unknown.

9.6. The Function ResolveTaskReference(A,T)

Parameters:

• A is an <atom> or text string.
• T is a task identifier

Value: ResolveTaskReference(A,T) evaluates to either the constant unknown, or to a
component identifier, which identifies a task.

Description:

The function ResolveTaskReference is used to determine whether a given atom A
appearing in the description of a task T should be treated as a reference to some other
task, and if so which task. The rule used is that if there is only one task named A then
A is taken to refer to that task, other wise if there is only one task named A that
belongs to the same plan as T then A refers to that task, otherwise A does not refer to a
task at all.

Definition:

1. If there exists an A′ such A′ and A are equal if case is ignored and a unique
task identifier CA such that the Properties table contains the row (CA, name,A′)
then ResolveTaskReference(A,T) = CA.

2. Else if there exist an A′ such A′ and A are equal if case is ignored and unique

task identifiers P and CA such that:

a. The Properties table contains the rows (P, parent_plan, T) and
(CA,name, A′), and

51

b. IsAncestor(P, CA) is true (see ¶9.7)

Then ResolveTaskReference(A,T) = CA.

3. Else ResolveTaskReference(A,T) = unknown.

9.7. The Condition IsAncestor(T1, T2)

Parameters:

• T1 and T2 are task identifiers.

Description:

This condition is true iff T1 identifies a plan and T2 identifies a component task of T1
or a component task of a component task of T1 and so on recursively.

Definition:

1. If the Properties table contains the row (T2 ,parent_plan, T1) then
IsAncestor(T1, T2) is true.

2. Else if there exists a task identifier T3 such that IsAncestor(T1, T3) is true and

the Properties table contains the row (T2 ,parent_plan, T3) then
IsAncestor(T1,T2) is true.

3. Else IsAncestor(T1,T2) is false.

9.8. ResolveCandidateReference(A,T)

Parameters:

• A is an <atom>
• T is a task identifier

Value: ResolveDataReference(A,T) evaluates to either the constant unknown or to a
component identifier, which identifies a candidate.

Definition:

• If the properties table contains a rows (T, candidates, <C1, … , Cn>) and there
is an A′ such A′ and A are equal if case is ignored and a Ci such that the
Properties table contains (Ci,Name, A′) then
ResolveCandidateReference(A,T)= Ci.

52

• Else ResolveCandidateReference(A,T) = unknown.

10. Properties of Components

We list here the properties that each class of component may have, along with the
allowed values for that property and its intended meaning. The semantics of
PROforma are such that a property never gets assigned a value that is not allowed.
Consequently there is no need for the EnactChanges operation (¶8.4) to check that
property values specified in the Changes table are actually allowed. The constant
unknown is an allowed value of all properties.

10.1. Properties Generic To All Components

Property Name Allowed Values
(besides unknown)

Intended Meaning

Class data_item, plan,
decision,
enquiry, action,
source,
candidate,
parameter, or
warning_flag

What sort of component it is.

Name Any text string A name for the component
caption Any PROforma

expression of type
text.

Expression that can be used to
generate the component’s
caption.

actual_caption Any text string. Actual caption of the
component, generated by
evaluating the caption at
the appropriate time.

description Any PROforma
expression of type
text.

An expression that can be
used to generate a longer
description of the component

actual_description Any text string. Actual description of the
component, generated by
evaluating the
description at the
appropriate time.

53

10.2. Properties Generic To All Tasks

Tasks may have all the generic component properties listed in ¶10.1 and in addition
may have the following properties.

Property Name Allowed Values
(besides

unknown)

Intended Meaning

state One of dormant,
discarded,
in_progress, or
completed.

The state of the task.

antecedent_tasks A sequence of task
identifiers.

The tasks that must be
completed or discarded
before this one starts.

goal Any Truth Valued
PROforma
expression.

What the task is intended to
do.

precondition Any Truth Valued
PROforma
expression.

A condition that may be
assumed to be true when the
task starts.

wait_condition Any Truth Valued
PROforma
expression.

A condition that must be true
before the task can start or be
discarded.

trigger A text string
conforming to the
syntax of <trigger>
as laid out in the
PROforma BNF.

The task’s trigger.

trigger_active true or false Whether or not the task’s
trigger is active.

postcondition A PROforma
assertion

A condition that may be
assumed to be true when the
task completes.

parameters A sequence of
Component
Identifiers each of
which identifies one
of the task’s
parameters.

The task’s parameters.

parent_plan A Task Identifier The task’s parent plan. For
the root plan this property has
the value unknown.

confirmatory true or false Whether or not the task needs
to be confirmed.

confirmed true or false Whether or not the task has
been confirmed.

54

current_cycle Any positive integer The current cycle number.
nbr_cycles_value Any positive integer The number of times this task

should be performed once
started.

nbr_cycles_expression Any integer valued
PROforma
expression.

Expression used to calculate
the nbr_cycles_value
property. Should evaluate to
a number ≥ 1.

cycle_until Any truth valued
PROforma
expression.

Task should be repetitively
performed until this condition
is true.

cycle_interval Any real valued
PROforma
expression

Amount of time in to wait
between cycles of this task.
See also
cycle_interval_units

cycle_interval_units Either seconds,
minutes, hours,
days, or weeks.

Units in which the cycle
interval is expressed.

start_at Any floating point
number.

Task will wait until Engine
Time exceeds or equals this
value and then start the task
(used in cycling).

optional true or false If true this task must
complete or be discarded
before its parent plan
completes (unless a terminal
task completes).

terminal true or false If true then if this task
completes then its parent plan
also completes.

lwth A sequence of four
integers.

Cartesian coordinates of a
point at which to display an
icon representing this task in
a GUI.

context Any text string Any additional information
that may need to be provided
when an action’s actual
procedure is performed, e.g.
who is supposed to perform it
and where.

in_progress_time Any floating point
number.

The engine time at which the
task last entered the
in_progress state.
unknown if the task has not
yet entered that state.

discarded_time Any floating point
number.

The engine time at which the
task last entered the
discarded state.
unknown if the task has not

55

yet entered that state.
completed_time Any floating point

number.
The engine time at which the
task last entered the
completed state.
unknown if the task has not
yet entered that state.

10.3. Properties Of Plans

A plan may have all the generic properties of tasks (¶10.2) in addition to the following
properties.

Property Name Allowed Values
(besides

unknown)

Intended Meaning

terminate_condition Any truth valued
PROforma
expression.

A condition that, if true, will
cause the plan to terminate.

abort_condition Any truth valued
PROforma
expression.

A condition that, if true, will
cause the plan to be aborted.

10.4. Properties Of Decisions

A decision may have all the generic properties of tasks (¶10.2) in addition to the
following properties.

Property Name Allowed Values

(besides unknown)
Intended Meaning

candidates A sequence of
Candidate Identifiers

The decision’s candidates.

sources A sequence of Source
Identifiers

The decision’s sources.

support_mode symbolic or
numeric

Whether arguments are to be weighed
up numerically or symbolically. Note
that the definition of net support given
in ¶9.4 attaches numeric values to
symbolic weights such as for and
against thus the distinction between
numeric and symbolic weighting does
not effect the semantics given in this
document.

choice_mode multiple or
single

Whether many candidates may be
chosen or only one.

result A sequence of The chosen candidate(s).

56

candidate identifiers. If
the choice_mode is
single then this
sequence contains only
one identifier.

10.5. Properties Of Actions

An action may have all the generic properties of tasks (¶10.2) in addition to the
following properties.

Property Name Allowed Values
(besides unknown)

Intended Meaning

procedure Any PROforma
expression of type
text.

Statically defined procedure to be
requested by the task.

actual_procedure Any text string Procedure that the task is actually
requesting.

10.6. Properties Of Enquiries

An enquiry may have all the generic properties of tasks (¶10.2) in addition to the
following properties.

Property Name Allowed Values
(besides unknown)

Intended Meaning

sources A sequence of source
identifiers.

The enquiry’s sources.

57

10.7. Properties Of Data Items

Data items may have all the generic component properties listed in ¶10.1 and in
addition may have the following properties.

Property Name Allowed Values
(besides unknown)

Intended Meaning

type One of text,
integer,
boolean,
datetime, date,
time, real,
setof_text,
setof_integer,
setof_real

The type of the data item

value Any PROforma value The value that has been
assigned to this data item.

range_values Any sequence of text
strings or numbers.

Allowed values for the data
item.

range_expressions Any sequence of
PROforma
expressions.

Expressions that are used to
calculate the
range_values property.

default_value Any text string or
number

A default value to be
suggested when requesting a
value for this data item.

mandatory_validation Any truth valued
PROforma
expression.

A condition that must be true
at the moment that a new
value is supplied for this data
item.

warning_conditions A sequence of
warning condition
identifiers.

Warning conditions for this
data item.

derivation_rule Any PROforma
expression.

An expression used to
calculate the value of this
data item at the moment it
becomes requested.

unit Any text string The units in which this data
item’s value is expressed.

requested Either true or
false.

Whether or not a new value
has been requested for the
data item.

10.8. Properties Of Candidates

58

Candidates may have all the generic component properties listed in ¶10.1 and in
addition may have the following properties.

Property Name Allowed Values
(besides unknown)

Intended Meaning

recommendation Any PROforma
expression

Condition that must be true in order
for this candidate to be
“recommended”

priority Any integer Priority of this candidate
arguments Any sequence of

argument identifiers.
Arguments associated with this
candidate.

10.9. Properties Of Arguments

Arguments may have all the generic component properties listed in ¶10.1 and in
addition may have the following properties.

Property Name Allowed Values
(besides unknown)

Intended Meaning

support Either confirming,
excluding, for
against, or an
integer or real number.

The support that this argument, if true,
will add to its candidate.

expression Any PROforma
expression

An expression defining this argument.

10.10. Properties Of Parameters

Parameters may have all the generic component properties listed in ¶10.1 and in
addition may have the following properties.

Property Name Allowed Values
(besides unknown)

Intended Meaning

value Any PROforma value The value that has been assigned to
this parameter.

expression Any PROforma
expression

An expression that will be evaluated
in order to assign a value to this
parameter.

10.11. Properties Of Sources

Sources may have all the generic component properties listed in ¶10.1 and in addition
may have the following properties.

59

Property Name Allowed Values

(besides unknown)
Intended Meaning

data_item A data item identifier Data Item for which a value is to be
provided.

mandatory true or false. Whether or not a value must be
supplied.

10.12. Properties Of Warning Conditions

Warning conditions may have all the generic component properties listed in ¶10.1 and
in addition may have the following properties.

Property Name Allowed Values
(besides unknown)

Intended Meaning

expression Any PROforma
expression

The condition we want to be warned
about.

activated true or false. Whether or not the expression
evaluated to true when a value was
last added to the warning condition’s
data item.

11. PROforma Built-in Operators

This section lists the functors and infix operators that may occur in a PROforma
<expression> along with their types and evaluation functions, which are used by the
function Evaluate (¶9.1) to evaluate the applications of these functions and operators.

11.1. Infix Operators

11.1.1. Arithmetic Operators “+”, “-”,“*”

We give here the allowed types and evaluation rule for “+”. The types for “-”,“*” are
the same as that for “+”. The evaluation rules for “-”,“*”, “/” are identical to that for
“+” except that in the definition of F- the arithmetic operator + is replaced by – and so
on. Note that “-” is also the name of the unary minus operator (¶11.2.2).

Types for “+”:

• (integer×integer)→integer
• (real×real)→real

60

Note that this typing allows an arithmetic operator to be applied to arguments whose
types are real×integer or integer×real because we can promote the integer
argument to real.

Definition of the evaluation function F+(T,V1, V2)

• If V1 and V2 are both integers or reals then F+(V1, V2)= V1 + V2
• Else if either V1 =unknown or V2 =unknown then F+(V1, V2) =unknown

11.1.2. Arithmetic Operator “/”

The only difference between the definition of “/” and that for “+”, “-”, and “*” is that
the result of a division is always treated as real even if its arguments are integers.

Types for “/”:

• (real×real)→real

Note that type promotion means that “/” is still typeable if one or both of its
arguments are integers.

Definition of the evaluation function F/(T,V1, V2)

• If V1 and V2 are both integers or reals then F/(V1, V2)= V1 / V2
• Else if either V1 =unknown or V2 =unknown then F+(V1, V2) =unknown

11.1.3. Comparison Operators “>”, “<”,“>=”“=>”, “<=”,
“=<”, “=”, “!=”, “<>"

We give here the allowed types and evaluation rule for “>”, “<”,“>=”“=>”, “<=”,
“=<”, “=”, “!=”, “<>"

Note that all these operators return false if one or both comparands has the value
unknown. This means that one cannot necessarily assume that not(a=b) is equivalent
to (a != b).

Types for “>”, “<”,“>=”“=>”, “<=”, “=<”, “=”, “!=”, “<>".

• (real×real)→truth_value
• (text×text)→truth_value
• (setof_real× setof_real)→truth_value
• (setof_text×setof_text)→truth_value

61

Definition of the evaluation function for “>”“<”, “<=”, “=>”, “>=”, “=>” , “=”,
“<>”and “!=”

The evaluation function for these operators is defined in terms of a function comp,
head, and tail which we define below. Note that comp, head, and tail are not
PROforma built- in operators, we have simply introduced it in order to define the
comparison operator.

For a non-empty sequence of values V :

• head(V) is the first element in the sequence
• tail(V) is the rest of the sequence (an empty sequence if the V contains only

one element).

Examples:

head(〈1 ,2,3〉) = 1
tail(〈1 ,2,3〉) = 〈2,3〉
head(〈 “a” 〉) = “a”
tail(〈 “a” 〉) = 〈〉

The function comp returns 1,-1,0,or unknown and is defined as follows:

• If V1 = unknown or V1 = unknown then comp (V1, V2) = unknown.

• Else if V1 and V2 are both integers or reals then

o If V1 > V2 comp (V1, V2)= 1
o Else if V1 < V2 comp (V1, V2)= -1
o Else if V1 = V2 comp (V1, V2)= 0

• Else if V1 and V2 are both text strings then
o If V1 is lexicographically greater than V2 ignoring considerations of

case then comp (V1, V2)= 1
o Else if V1 is lexicographically less than V2 ignoring considerations of

case then comp (V1, V2)= -1
o Else if V1 is lexicographically equal to V2 ignoring considerations of

case then comp (V1, V2)= 0

• Else if V1 and V2 are non-empty sequences of values then

o If comp (head(V1),head(V2))= 1 then comp (V1, V2)= 1
o Else if comp (head(V1),head(V2))= -1 then comp (V1, V2)= -1
o Else comp (V1, V2)= comp (tail(V1),tail(V2))

• Else if V1 and V2 are both empty sequences then comp (V1, V2)= 0
• Else if V1 is an empty sequence then comp(V1, V2) = -1
• Else if V2 is an empty sequence then comp(V1, V2) = +1

62

The evaluation functions fo r all comparison operators are defined in terms of comp as
follows:

comp (V1, V2) 1 -1 0 unknown

F>(V1, V2) true false false false
F<(V1, V2) false true false false
F>=(V1, V2) true false true false
F<=(V1, V2) false true true false
F=(V1, V2) false false true false
F!=(V1, V2) true true false false

We treat “>=” and “=>” as synonyms, similarly “<=” is synonymous with “=<” and
“<>” with “!=”.

11.1.4. Boolean Operators “and”, “or”

We give here the allowed types and evaluation functions for “and” and “or”.

Types for “and”:

• (truth_value×truth_value)→truth_value

Definition of the evaluation function Fand(T, V1, V2)

• If V1 =true and V2=true then Fand(V1, V2)= true
• Else Fand(V1, V2)= false.

Types for “or”:

• (truth_value×truth_value)→truth_value

Definition of the evaluation function For(V1, V2)

• If either V1 =true or V2=true then For(V1, V2)= true
• Else For(V1, V2)= false.

11.1.5. Text Concatenation Operator “#”

Types for “#”:

63

• (text×text)→text
• (real×text)→text
• (text×real)→text
• (real×real)→text

Definition of the evaluation function F#(T, V1, V2)

• If V1 ≠ unknown and V2 ≠ unknown then F#(V1, V2)=the concatenation of the
textual representations of V1 and V2. The text representation of a text item is
the item itself, the text representation of an integer or real is implementation
dependent. As example F#(“he”, “llo”)= “hello” and F#(“pi is ”,“3.14159”)
might be “pi is 3.14159” depending on how the implementation represents real
numbers as text.

• Else F#(V1, V2)= unknown.

11.1.6. Membership Operators “includes”, “include”,
“oneof”

We give here the allowed types and evaluation function for “includes”. The operator
“include” is a synonym for “includes”. The operator “oneof” is identical to “includes”
except that the order its operands is reversed, i.e. E1“oneof”E2 ≡ E2“includes”E1

Types for “includes”:

• (setof_text×text)→truth_value
• (setof_real×real)→truth_value

Definition of the evaluation function Fincludes(T, V1, V2)

The definition uses the function comp introduced in ¶11.1.3 and is as follows:

• If V1 is a sequence of values 〈V1,1 , … , V1,n〉 and if there exists a j such that
(1≤j≤n) and comp(V1,j ,V2) = 0 then Fincludes(V1, V2)=true.

• Else Fincludes(V1, V2)=false.

11.2. Prefix Functors

11.2.1. Conditional Operator “if”

We give here the allowed types and evaluation functions for “if”.

64

Types for “if”:

• (truth_value×truth_value×truth_value)→truth_value
• (truth_value×integer×integer)→integer
• (truth_value×real×real)→real
• (truth_value×text×text)→text

• (truth_value×setof_integer×setof_integer)
 →setof_integer

• (truth_value× setof_real×setof_real)→ setof_real
• (truth_value× setof_text×setof_text)→setof_text

Definition of the evaluation function Fi f(T, V1, V2, V3)

• If V1 =true then Fif(V1, V2, V3) = V2
• Else If V1 =false then Fif(V1, V2, V3) = V3
• Else Fif(V1, V2, V3) = unknown

11.2.2. Unary Minus Operator “-”

We give here the allowed types and evaluation rule for the unary minus operator “-”.

Types for “-” (unary minus):

• (integer)→integer
• (real)→real

Definition of the evaluation function F-(T, V1) for unary minus.

• If V1 is an integer or real then F-(V1)= -V1
• Else if either V1 =unknown then F-(V1) =unknown

11.2.3. The functor “isknown”

Types for “isknown”:

• text→truth_value
• real→truth_value
• setof_text→truth_value
• setof_real→truth_value
• truth_value→truth_value

65

Definition of the evaluation function Fisknown (T, V)

• If V =unknown then Fisknown(V)=true.
• Else Fisknown(V)=false.

11.2.4. Boolean Operator “not”

We give here the allowed types and evaluation functions for “no t”

Types for “not”:

• truth_value→truth_value

Definition of the evaluation function Fnot(T, V)

• If V =false then Fnot(V)= true
• Else Fnot(V)= false.

11.2.5. Operator “count”

Types for “count”:

• setof_real→integer
• setof_text→integer

Definition of the evaluation function Fcount (T, V)

• If V = is a non-empty sequence of values 〈V1, … , Vn〉 then Fcount(V)= n
• Else if V = is an empty sequence then Fcount(V)= 0
• Else Fcount(V)= unknown

11.2.6. Operator “sum”

Types for “sum”:

• setof_integer→integer
• setof_real→real

Definition of the evaluation function Fsum(T, V)

• If V = is a non-empty sequence of values 〈V1 , … , Vn〉 and each value Vi
(1≤i≤n) is a real number or integer then Fsum(V)= V1+…+Vn

66

• Else if V = is an empty sequence then Fsum(V)= 0

• Else Fsum(V)= unknown

11.2.7. Operator “max”

Types for “max”:

• setof_integer→integer
• setof_real→real
• setof_text→text

Definition of the evaluation function Fmax(T, V)

Fmax(T, V) is defined using the comp function introduced in ¶11.1.3.

• If V = is a non-empty sequence of values 〈V1 , … , Vn〉 and there exists an
integer i such that all of the following conditions are true:

o 1≤ i ≤n
o Vi ≠unknown
o For all j such that 1≤ j ≤n : comp(Vi , Vj)≥0 or comp(Vi , Vj)=unknown

then Fmax(T, V)= Vi.

• Else Fmax(T, V)= unknown.

11.2.8. Operator “min”

Types for “min”:

• setof_integer→integer
• setof_real→real
• setof_text→text

Definition of the evaluation function Fmin(T, V)

Fmin(T, V) is defined using the comp function introduced in ¶11.1.3.

• If V = is a non-empty sequence of values 〈V1 , … , Vn〉 and there exists an
integer i such that all of the following conditions are true:

o 1≤ i ≤n
o Vi ≠unknown

67

o For all j such that 1≤ j ≤n : comp(Vi , Vj)≤0 or comp(Vi , Vj)=unknown

then Fmin(T, V)= Vi.

• Else Fmin(T, V)= unknown

11.2.9. Operator “nth”

Types for “sum”:

• integer→setof_integer→integer
• integer→setof_real→real
• integer→setof_text→text

Definition of the evaluation function Fnth (T, V1,V2)

• If V2 is a sequence of values 〈V2,1, … , V2,n〉 and V1 is an integer i such that
1≤ i ≤n then Fnth(T, V1,V2) = V2, i.

• Else Fnth(T, V1,V2) = unknown.

11.2.10. Operators “is_dormant”, “is_in_progress”,
“is_discarded” and “is_completed”.

We give here the type and evaluation rule for is_dormant. The types for
is_in_progress, is_discarded, is_completed are the same and their evaluation rules are
identical except that the word “dormant” should respectively replaced by
“in_progress”, “discarded” and “completed”.

Types for “is_dormant”

• text→truth_value

Definition of the evaluation function Fis_dormant(T, V)

• Let C=ResolveTaskReference(V,T).
• If C = unknown then Fis_dormant(T, V) = unknown.
• Otherwise Fis_dormant(T, V) = true if the properties table contains

(C,state,dormant)and Fis_dormant(T, V) = false otherwise.

68

11.2.11. Operators “in_progress_time”, “discarded_time”
and “completed_time”.

We give here the type and evaluation rule for in_progress_time. The types for
discarded_time, and completed_time are the same and their evaluation rules are
identical except that the word “dormant” should respectively replaced by
“in_progress”, “discarded” and “completed”.

Types for “in_progress_time”

• text→real

Definition of the evaluation function Fin_progress_time(T, V)

• Let C=ResolveTaskReference(V,T).
• If there exists a real number N such that the properties table contains

(C,in_progress_time,N)then Fin_progress_time(T, V)=N otherwise
Fin_progress_time(T, V)=unknown.

11.2.12. Operator “union”

Types for “union”:

• setof_anything→setof_anything→setof_anything
• setof_integer→setof_integer→setof_integer
• setof_real→setof_real→setof_real
• setof_text→setof_text→setof_text

Definition of the evaluation function Funion(T, V1,V2)

• If V1 is a sequence of values 〈 V1,1, … , V1,n〉 and V2 is a sequence of values
〈V2,1, … , V2,n〉 then Funion(T, V1,V2) = 〈 V1,1, … , V1,n , V2,1, … , V2,n〉 .

• Else Funion(T, V1,V2) = unknown.

11.2.13. Operator “diff”

Types for “diff”:

• setof_anything→setof_anything→setof_anything
• setof_integer→setof_integer→setof_integer
• setof_real→setof_real→setof_real
• setof_text→setof_text→setof_text

Definition of the evaluation function Fdiff(T, V1,V2)

69

• If V1 is a sequence of values 〈 V1,1, … , V1,n〉 and V2 is a sequence of values
〈V2,1, … , V2,n〉 then Fdiff(T, V1,V2) = the result of taking V1 and removing all
values V1,i where V1,i ≠ unknown and there exists j such that V1,i = V2,j.

• Else Fdiff(T, V1,V2) = unknown.

11.2.14. Operator “intersect”

Types for “intersect”:

• setof_anything→setof_anything→setof_anything
• setof_integer→setof_integer→setof_integer
• setof_real→setof_real→setof_real
• setof_text→setof_text→setof_text

Definition of the evaluation function Fintersect(T, V1,V2)

• If V1 is a sequence of values 〈 V1,1, … , V1,n〉 and V2 is a sequence of values
〈V2,1, … , V2,n〉 then Fintersect (T, V1,V2) = the result of taking V1 and removing
all values V1,i where either V1,i = unknown or there does not exist j such that
V1,i = V2,j.

• Else Fintersect (T, V1,V2) = unknown.

11.2.15. Operator “abs”

Types for “abs”:

• integer→integer
• real→real

Definition of the evaluation function Fabs(T, V)

• If V is an integer or real number then Fabs(T, V)=the absolute value of V.

• Else Fabs(T, V)== unknown.

11.2.16. Operator “exp”

Types for “exp”:

• real→real

Definition of the evaluation function Fexp(T, V)

70

• If V is an integer or real number then Fexp(T, V)= eV.

• Else Fexp(T, V)== unknown.

11.2.17. Operator “ln”

Types for “ln”:

• real→real

Definition of the evaluation function Fln(T, V)

• If V is an integer or real number and V>0 then Fln(T, V)= the natural logarithm
of V.

• Else if V is an integer or real number and V≤0 then Fln(T, V) is undefined and

an attempt to evaluate it will set the Exception flag to true.

• Else Fln(T, V)== unknown.

11.2.18. Operator “sin”

Types for “sin”:

• real→real

Definition of the evaluation function Fsin(T, V)

• If V is an integer or real number and then Fsin(T, V)= the trigonometric sine of
V (i.e. we assume V is expressed in radians).

• Else Fsin(T, V)= unknown.

11.2.19. Operator “cos”

Types for “cos”:

• real→real

Definition of the evaluation function Fcos(T, V)

• If V is an integer or real number and then Fcos(T, V)= the trigonometric cosine
of V (i.e. we assume V is expressed in radians).

71

• Else Fcos(T, V)= unknown.

11.2.20. Operator “tan”

Types for “tan”:

• real→real

Definition of the evaluation function Ftan(T, V)

• If V = unknown then Ftan(T, V)= unknown.

• Else if Fcos(T, V)≠0 then Ftan(T, V)= Fsin(T, V)/ Fcos(T, V).

• Else Ftan(T, V) is undefined and an attempt to evaluate it will set the Exception

flag to true.

11.2.21. Operator “asin”

Types for “asin”:

• real→real

Definition of the evaluation function Fasin(T, V)

• If V = unknown then Fasin(T, V)= unknown.

• Else there exists a number X such that Fsin(T, X)≠ V then Fasin(T, V)= X.

• Else Fasin(T, V) is undefined and an attempt to evaluate it will set the Exception

flag to true.

11.2.22. Operator “acos”

Types for “acos”:

• real→real

Definition of the evaluation function Facos(T, V)

• If V = unknown then Facos(T, V)= unknown.

• Else there exists a number X such that Fcos(T, X)≠ V then Facos(T, V)= X.

72

• Else Facos(T, V) is undefined and an attempt to evaluate it will set the

Exception flag to true.

11.2.23. Operator “atan”

Types for “atan”:

• real→real

Definition of the evaluation function Fatan(T, V)

• If V = unknown then Fatan(T, V)= unknown.

• Else there exists a number X such that Ftan(T, X)≠ V then Fatan(T, V)= X.

• Else Fatan(T, V) is undefined and an attempt to evaluate it will set the Exception

flag to true.

11.2.24. Operator “random”

Types for “random”:

• real

Definition of the evaluation function Frandom(T)

• Frandom(T, V)= RandomNum.

12. Loading Guidelines

The state of the guideline is initialised by the LoadGuideline operation, whose
parameter is a text string G conforming to the syntax of <guideline> in the PROforma
BNF. The Proforma BNF defines a <guideline> by

<guideline> = [<directives>] <plan> {<task>|<data_item>}

So the guideline G is of the form Dir RootDef1 … DefN, where:

• Dir is the directives block of the guideline, whose syntax is defined by
<directives>,

• Root is the root plan, whose syntax is defined by <plan>, and
• Def1 … DefN, are definitions of the data items and tasks in the plan (other than

the root plan) whose syntax is defined by either <task> or <data_item>.

73

12.1. The Operation LoadGuideline(G)

Parameters:

• G is a text string having the syntax <guideline>

Definition:

1. Set RandomNum to a real value in the range 0 to 1 inclusive. We do not define
how this value is chosen but the intention is that it should be generated in a
pseudo-random manner.

2. Set the Exception flag to false and empty the Properties and Changes table.

3. Parse G as Dir RootDef1 … Defn, where Dir has the syntax <directives> Root

has the syntax <plan>, and Def1 … Defn, are definitions of the data items and
tasks in the plan (other than the root plan) whose syntax is defined by either
<task> or <data_item>.

4. Select a “new” component identifier C (“new” meaning that C does not

already occur in the Properties table).

5. Perform the operation InstantiateTask(G, Root, C)

6. For each Defi in the set of components Def1 … DefN , if Def i is a <data_item>

then perform InstantiateDataItem(Defi). If Defi is a <task> then ignore it (the
instantiation of the root plan in step 2 will result in the instantiation of all the
other tasks in the guideline).

12.2. The Operation InstantiateTask(G,T, C)

Parameters:

• G is a text string whose syntax is defined by <guideline> and which describes

the guideline we are loading.
• T is text string whose syntax is defined by <task> and which describes the

task we are instantiating. T will be part of the guideline G.
• C is a component identifier, which is to be used to identify the task T.

From the BNF for PROforma set out in ¶3 it can be seen that T must be of the form
TaskClass ‘::’ Name Att1 … AttN “end” TaskClass “.” where

• TaskClass is one of “plan”, “decision”, “action”, or “enquiry”.
• Name is the name of the task, whose syntax is defined by <name>

74

• Att1 … AttN is the definition of task’s attributes, whose syntax is defined by
either {<plan_attribute>} {<decision_attribute>} {<action_attribute>}
{<enquiry_attribute>} depending on the value of TaskClass.

As specified in Definition 1 we call a text string of the above form a Task Definition
for the task Name.

Definition:

1. Parse T as TaskClass ‘::’ Name Att1 … AttN “end” TaskClass “.” where
a. TaskClass is one of “plan”, “decision”, “action”, or “enquiry”.
b. Name is the name of the task, whose syntax is defined by <name>
c. Att1 … AttN is the definition of task’s attributes, whose syntax is

defined by either {<plan_attribute>} {<decision_attribute>}
{<action_attribute>} {<enquiry_attribute>} depending on the value of
TaskClass.

2. Add (C,class,ClassConst) to the Properties table where ClassConst is either

plan, decision, action, or enquiry depending on whether TaskClass
is respectively “plan”, “decision”, “action”, or “enquiry”.

3. Add (C,state,dormant) to the Properties table.

4. For each Atti in the attribute list Att1 … AttN perform the operation

SetTaskAttribute(C, Atti). This operation is defined in ¶12.5.

5. For each Atti having the syntax of <component> perform the operation
InstantiateComponent(G, C, Atti). This operation is defined in ¶12.3. Note that
only a plan has attributes of the form <component>.

75

12.3. The Operation InstantiateComponent(G, CT , A).

Parameters:

• A text string G whose syntax is defined by <guideline> and which describes
the guideline we are loading.

• A component identifier CT.
• A text string A whose syntax is defined by <component >.

Definition:

1. Parse A as “component” “::” Name Att1 … Attn where Name has the syntax
<task_name> and each Atti (1 ≤ i ≤ n) has the syntax <component_attribute>.

2. Find the Task Identifier CA such that (CA,name,Name) and

(CA,parent_plan,CT) are both in the Properties table. These rows will have
been created by the SetTaskAttribute Operation (¶12.5).

3. If the Properties table contains the row (CA,class,decision) or

(CA,class,action) then add the row (CA,confirmatory,true) to the
Properties table otherwise add the row (CA,confirmatory,false). Note
that this establishes a default value for the confirmatory property which
may be overridden by the SetComponentAttribute operation.

4. For each Atti (1 ≤ i ≤ N) perform the operation

SetComponentAttribute(CA,CT,Atti)

5. Let TA be the task definition for task Name in guideline G. The meaning of

“Task Definition” is given in Definition 1, the context sensitive syntax of
PROforma guarantees that G will contain exactly one task definition for task
Name.

6. Perform the operation InstantiateTask(G, TA, CA).

12.4. The Operation SetComponentAttribute(C,CP,A)

Parameters:

• C is a task Identifier.
• CP is a task identifier, which identifies the parent task of C.
• A is a text string of the form <component_attribute>.

Definition:

76

1. If A is of the form ““schedule_constraint” “::” “completed” “(“ Name “)”
“;” then
• Find the task identifier CA such that the Properties Table contains the

rows (CA , name, Name) and (CA , parent_plan, CP). These rows will
have been created by the SetTaskAttribute Operation (¶12.5).

• If the Properties table contains a row (C,antecedent_tasks,<T1,…,TN>)
where <T1,…,TN> is a sequence of task identifiers then replace this row
with (C,antecedent_tasks,<T1,…,TN ,CA>).

• Otherwise add (C,antecedent_tasks,<CA>) to the Properties table where
<CA> is the sequence containing just CA.

2. If A is of the form “param_value” “::” Name = E “;” where Name is an

<atom> and E is an <expression> then
• Create a new component identifier P
• Add the rows (P, class, parameter), (P,expression,E) and

(P,name,Name) to the Properties table.
• If the Properties table contains a row (C,parameters,<P1,…,PN>) where

<P1,…,PN> is a sequence of text strings then replace this row with
(C,parameters,<P1,…,PN ,P>).

• Otherwise add (C,parameter_assignments,<P>) to the Properties table
where <P> is the sequence containing just P.

3. If A is of the form “cycle_repeat” “::” E U where E is an <expression>

and U is a <time_unit> then and add (C,cycle_interval,E)
(C,cycle_interval_unit ,U) to the Properties table.

4. If A is of the form “autonomous” “::” “yes” resp. “autonomous” “::” “no”

and the Properties table does not contain the row (CA,class,enquiry)
or (CA,class,plan) then add the row (CA,confirmatory,true)
resp. (CA,confirmatory,false) to the Properties table.

Note that the “autonomous” keyword is ignored for enquiries and plans.

5. Otherwise add the row indicated by Table 1 below.

Form Of A Row Added To The Properties Table

“optional” “::” “yes” “;” (C,optional,true)
“optional” “::” “no” “;” (C,optional,false)
“terminal” “::” “yes” “;” (C,terminal,true)
“terminal” “::” “no” “;” (C,terminal,false)
“ltwh” “::” N1 “,” N2 “,” N3 “,” N4 “;”
(each Ni having the syntax <integer>)

(C,lwth,<V1,V2,V3,V4>) where
V1,V2,V3,V4 are the numeric values of
the integers N1,N2,N3,N4.

“number_of_cycles” “::” N “;”
(N having the syntax <integer>)

(C,lwth,V) where V is the numeric
value of N.

77

“cycle_until” “::” E (C,cycle_until,E)

Table 1 Rows Added By SetComponentAttribute

12.5. The Operation SetTaskAttribute(G,C,Att)

Parameters:

• C is a task identifier that has previously been chosen for this task. In the case
of the root plan this identifier will have been chosen by the LoadGuideline
operation, for any other task it will have been chosen as a result of performing
InstantiateTask (¶12.2) on its parent plan.

• Att is a text string describing the attribute value to be set. The syntax of Att is
defined by either <generic_attribute> <plan_attribute>, <decision_attribute>,
<action_attribute>, or <enquiry_attribute>3.

Definition:

1. If Att is of the form “component” “::” Name CompAtts where Name has the
syntax <task> and CompAtts has the syntax {<component_attribute>} then

a. Create a new Task Identifier T
b. Add the row (T,name,Name) to the Properties table.
c. Add (T,parent_plan,C) to the Properties table.

2. Else if Att begins with the reserved word “candidate” then perform the

operation InstantiateCandidate(C,Att)

3. Else if Att begins with the reserved word “source” then perform the operation
InstantiateSource(C,Att)

4. Else If Att is of the form “parameter” “::” P1 “,”…“,” PN “;” then:

a. Parse each Pi as

Name [“attributes” [“type” “::” Type] [<generic_attribute_list>]]

where square brackets denote optional components, Name is a
<parameter_name> and Type , if present is a <data_type>

b. Look for a component identifier CP such that the Properties table
contains the rows (CP,name,Name), (CP,class,parameter). If no such
identifier is found then create it and add those two rows.

c. If Type is present then (CP,type,Type) to the Properties table otherwise

add (CP,type,text) to the Properties table, where CP is the component
identifier found or created in step b.

3 Or by all four of these if the attribute is a <generic_task_attribute> .

78

d. If a <generic_attribute_list> is present and defines a caption Cap then
add (CP,caption,Cap) to the Properties table, where CP is the
component identifier found or created in step b.

e. If the <generic_attribute_list> is present and defines a description Desc

then add (CP,description,Desc) to the Properties table, where CP is the
component identifier found or created in step b.

5. Else add to the Properties table the rows specified in Table 2 below.

Form Of Att Row Added To The Properties Table

“caption” “::” Cap “;” (C,caption,Cap)
“description” “::” D “;” (C,definition,D)
“goal” “::” G “;” (C,goal,G)
“precondition” P “::”“;” (C,precondition,P)
“wait_condition” P “::”“;” (C,wait_condition,P)
“trigger” “::” T “;” (C,trigger,T)
“postcondition” “::” P “;” (C,postcondition,P)
“abort” “::” A “;” (C,abort_condition,A)
“terminate” “::” T “;” (C,terminate_condition,T)
“choice_mode” “::”
[“single”|“multiple”] “;”

(C,choice_mode,M) where M is either
the constants single or the constant
multiple as appropriate.

<support_mode> = “support_mode”
“::” [“symbolic” | “numeric”] “;”

(C,support_mode,M) where M is either
the constant symbolic or the constant
numeric as appropriate.

“procedure” “::” P “;” (C,procedure,P)
<context> = “context” “::” Con “;” (C,context,Con)

Table 2 Rows Added Properties Table By SetTaskAttribute

12.6. The Operation InstantiateCandidate(D,Cand)

Parameters:

• D is a component identifier identifying a decision.
• Cand is a text string whose syntax is defined by <candidate> and which

describes a candidate of the decision D.

Definition:

1. Parse Cand as “candidate” “::” Name “;” A1… AN where Name is a
<candidate_name> and each Ai is a <candidate_attribute>.

79

2. Create a new component identifier C.

3. Add (C, class, candidate) to the Properties table.

4. Add (C, name, Name) to the Properties table.

5. If the Properties table contains a row (D, candidates, <C1, …,CN>) then
replace this row with (D, candidates, <C1,…,CN, C>) otherwise add
(D,candidates,<C>) to the Properties table.

6. For each Ai (where 1≤i≤n):

a. If Ai is an <argument> then perform the operation
InstantiateArgument(C,Ai) as defined in ¶12.7.

b. Otherwise add a row to the Properties table as set out in below.

Form Of Ai Row Added To The Properties Table

“caption” “::” Cap “;” (C,caption,Cap)
“descrip tion” :: D “;” (C,description,D)
 “rule” “::” E “;” None
 “recommendation” “::” E “;” (Cand, recommendation, E)
<priority> = “priority” “::” N “;” where
N is an <integer>

(Cand, priority, V) where V is the numeric
value of N.

Table 3 Rows Added by the InstantiateCandidate Operation

12.7. The Operation InstantiateArgument(C,A)

Parameters:

• C is a component identifer identifying a candidate.
• A is a text string with the syntax of <argument>, which defines an argument

of the candidate C.

Definition:

1. Parse A as “argument” “::” S “,” E , [“attributes” [“name” “::” Name “;”]
[<generic_attribute_list>]]“;” where square brackets denote optional
components, S is a <support>, E is an <expression>, and Name, if present is
an <argument_name>.

2. Create a new component identifier CA.

3. Add (CA, class, argument) to the Properties table.

4. If the properties table contains a row (C,arguments, <C1, …, CN>) then replace

this row with (C,arguments, <C1, …, CN, CA>), otherwise add
(C,arguments,<CA>) to the properties table.

80

5. Add (CA, support, V) to the properties table where V is for, against,

confirming, excluding or the numeric value of S depending on
whether S is “for”, “against”, “confirming”, “excluding” or an <integer>.

6. If Name was present then add (CA, name, Name) to the Properties Table.

7. If the generic attribute list defines a caption Cap then add (CA, caption, Cap) to

the Properties Table.

8. If If the generic attribute list defines a description desc then add (CA,
description, desc) to the Properties Table.

12.8. The Operation InstantiateSource(C,S)

Parameters:

• C is a task identifier and identifies a decision or enquiry.
• S is a text string whose syntax is defined by <source>.

Definition:

1. Parse S as “source” “::” Name “;” A1 … AN where Name is a <data_name> and
A1 … AN are <source_attribute>s

2. Create a new component identifier CS.

3. Add (CS, class, source) to the Properties table.

4. Add (CS, name, Name) to the Properties table.

5. If the Properties table contains a row (C, sources, <C1, … , CN>) then replace

this row with (C, sources, <C1, … , CN,CS>) otherwise add (C, sources, <CS>)
to the Properties table.

6. If there is no component identifier D such that the Properties table contains the

rows (D,name,Name) and (D, class, data_item) then create a new identifier
D and add those two rows to the Properties table.

7. Add the row (CS, data_item,D) to the Properties table where D is the

component identifier created or found in step 5 above.

8. For each Ai (1 ≤ i≤N) add to the Properties table the row specified by Table 4
below.

Form Of Ai Row Added To The Properties Table

81

“caption” “::” Cap “;” (C,caption,Cap)
“description” “::” D “;” (C,description,D)
“mandatory” “::” “yes” “;” (C,mandatory,true)
“mandatory” “::” “no” “;” (C,mandatory,false)

Table 4 Rows Added By InstantiateSource

12.9. The Operation InstantiateDataItem(Def).

Parameters:

• Def is a text string with the syntax

Definition:

1. Parse Def as “data” “::” Name “type” “::” Type “;”A1 … AN “end” “data” “;”
where Name is a <data_name>, Type is a <data_type> and each Ai is a
<data_attribute> (for 1≤ i≤N).

2. Create a new component identifier C.

3. Add the row (C, class, data_item) to the Properties table.

4. Add (C, name,Name) and (C, type, Type) to the Properties table.

5. For each each Ai (1≤ i≤N) :

a. If Ai is of the form “warning_condition” “::” K “,” E “;” where K is a

<constant> and E is an <expression> then create a new component
identifier W and add the rows (W,name,K) and (W,condition,E) to the
Properties table.

b. Else add to the Properties table the row specified by Table 5 below.

Form Of Ai Row Added To The Properties Table

“caption” “::” Cap “;” (C,caption,Cap)
“description” “::” D “;” (C,description,D)
“range” “::” T1, …,Tn “;”for each i such
that 1≤i≤n, Ti is a <textual_constant>.

(C,range, 〈V1, …,Vn 〉) where, for each i
such that 1≤i≤n, Vi is Ti with any
enclosing single or double quotes
removed.

“range” “::” N1, …,Nn “;”for each i such
that 1≤i≤n, Ni is a <number>.

(C,range, 〈V1, …,Vn 〉) where, for each i
such that 1≤i≤n, Vi is the numeric value
of Ni .

82

“default_value” “::” C “;” where C is a
<constant>.

(C,default_value, V) where V is the value
of C.

“true_value” “::” T “;” (C,true_value, T)
“false_value” “::” F “;” (C,false_value, F)
“mandatory_validation” “::” E “;” (C,mandatory_validation, E)
“derivation” “::” E “;” (C,derivation, E)
“unit” “::” U “;” (C,unit, U)

Table 5 Rows Added By InstantiateDataItem

