Cancer Research UK
Advanced Computation Laboratory

PROforma technical paper

Title: Syntax and Semantics of PROforma
Authors: David Sutton, John Fox

Version: 1.3.38

Status: Draft

Date: 26/03/2003

Summary

Describes the syntax and semantics for Proforma

© Cancer Research UK, London, UK

Please do not quote or copy.

Contents

R 1 01400 11 (o] o PSPPI 5
A (o = 0 110 SRR 5
3. BINF SYNEBX...tiiiiieeeeee e e e 7
3.1, AsSuMPionS and NOLEHION........c.ccceieerieeieeeeseese e e eee e e ee e ee e 7
3.2, BNF ProduCtioNS..........cccueiirieiiiiinie ettt 7
3.3. Noteon<yes or no>and <data type>........cccccererrrrieenerinrieeneene e 14
4. TypeINferenCe RUIES.........cccveeiiee ettt 15
4.1. Type Inference Rules for an EXPression E...........cccveveeeeevieecieveese e, 15
4.2, TypePromotion RUIESccuiiiie ettt 17
4.3. Reationship Between Declared And Inferred Types For Data Items And
PAr@IMELENS. ... e 17
5. SCOPERUIES..... .ottt e e st b s s re e be e s nneenneesaneens 18
51 Example Of Use Of Parameters........cccooverieienininereseseeee e 19
6. ContexXtual CONSITAINTS.ccceiviriererieserieseee et sb e ens 20
6.1. Constraints On The Use Of Task, Candidate And Parameter Names......... 20
6.2. Note On Use Of Built-In Functions and Operators.cccceevereriereennenn 21
A = T s T ol o o= oSSR 22
7.1. Guideines, Tasks, and Data ItemS..........ccccoveierenineninereeeee e 22
7.2. PROFOIMAa EXPrESSIONS.coccvieiiieiieeiieeeiteeseeesteeeee et ste et e sae e sneennee e 23
7.3, PROFOMA ASSEIMIONSoovveeiieieeieeieseesie e see e eee e sse e e este e sneenseeneens 23
7.4, PROFOMMAVEAUES......cceiieiece st 23
A T = S QS - (=TS 23
8. The Abstract PROTOrmMa ENGINE.cccooiieiiiiiieieeese e 24
8.1, GUITEIINE SEAE......ccuereereiriieeeie e sae e 24
8.2 DEfINITIONS.....ceiiiiiieiieie ettt st sb e e 25
8.2.1. Relationship to The PROfOrma SyntaX..........ccoeveeerereeneneneseneneens 26
LG U1 [T ol @] = 1o T 26
8.3.1. The LoadGuideling Operation...........cccceeveeieeiesieeseesie e seese e 26
8.3.2. The RUNENGINE OPErationccceeiieeiiieiie et 26
8.3.3. The Operation SEtENGINETIME(X) ...ccvovviriiririiririeieieee e 27
8.34. The Operation ConfirmTask(T)cccceeivrierieriisiese e 27
8.3.5. The Operation CommitCandidates(T, <Ci, ..., CN>) covrvererrrnenniennn. 28
8.3.6. TheOperation AddDataValue(D,V)ccccocereriririiriieerenese e 28
8.3.7. The Operation SendTrigger(Trig) ...ccceeierverieeieeieseere e 29
8.4. The Operation EnactChanges...........cccceiieiiiiciie e 30
8.5. Operations Taking a Task Identifier AS A Parameter.........cccccevvevvneeneennen. 30
85.1. TheOperation REVIEW(T) ...cooeeieeeeseeie e 30
852, TheOperation NitialiSE(T)ccvveeeeririieeiie e 31
853, The Operation Sart(T)cccceeeereeieereeriesiesee e 32
8.5.4. TheOperation DISCard(T)ccceeveeeereerierieeseesiesee e e se e e e 34
8.5.5. The Operation COMPIEte(T)cccveeeeeieecee e 34
8.5.6. The Operation SEtSEArTAL(T) .c.ceoeeeereeeeie e 35
85.7. The Operation InitialiseCandidate(C)ccocvrererierieerierenese e 36
8.5.8. The Operation ActualiseCandidate(C,T).......ccccveveervererieeieereeieereene 36
8.5.9. TheOperation InitialiseGenericProperties(C)cccccvvveveeveevcveesieenne, 37
8.5.10. The Operation ActualiseGenericProperties(C,T)cccovvererenereneniens 37
8.5.11. The Operation ENaCtASSEItiON(A,T) .c.ecvveeeieee e 37

8.5.12. The Operation INitialiSESOUrCE(ST) ...ccvveeieereeeeseere e 38

8.6. TasKk CONUILIONScccueeueeiuieieeie sttt a e ae e 38
8.6.1. INitialiSECONAITIONS(T)oveieiieieeee e e 39
8.6.2. StartConditioNS(T).....cceevuereeiieieeee e eee s 39
8.6.3. [DIES'oro (@0 laTe] (0] 01 (L 1) TS 41
8.6.4. CompleteConditioNS(T)......cceereeieereerierieriesie st 42
8.6.5. ScheduledStartConditioNS(T)ccceereerrerieereerieeee e e 43
8.6.6. ScheduleConditioNS(T) ...cveeceeeee e 44
8.6.7. (@Yo 1= @0l a0 1Kol g1 (1) ST 44
8.6.8. TerminationConditioNS(T)cceveereerreeirerieseeriesee e e se e e 45

9. Evaluation Of EXPreSSIONS........cceeiiiieiiieiieseesteesteseeseessesseesseesseseesseesesneessesnnens 45

9.1. TheFunction EVAUAE(E,T)ccoiieiieeie e 46

9.2. The Function EvaluateDataReference(D,T)cocvverererereriieieesiesie s 47

9.3. The Function EvaluateParameter(D,T)ccceveeveeieiieeneere e 47

9.4. The Function EvaluateNetSUPPOIt(T,C)cooereererienieneeie e 49

9.5. TheFunction ResolveDataReferenCe(A,T)coervererererereeeesee e 49

9.6. TheFunction ResolveTaskReferenCe(A,T) ..covvveevereeseeie e 50

9.7. TheCondition 1SANCESION(T1, T2).ioieiieiieiiierie e 51

9.8. ResolveCandidateReferenCe(A,T) . oooveeereee e 51

10. Properties of COMPONENES.........cceiieiereereere e ee e e e e 52

10.1. Properties Generic To All COMPONENES.........ccccveveereeiesee e e 52

10.2. Properties Generic TO All TasKS.....ccovceeieeiie e 53

10.3. PropertieS Of PlanS........ccooiiirineieneeeeee e e 55

10.4. PropertieS Of DECISIONSccceveeiieieeiierieseeseestesee st eee et ee e sne e 55

10.5. PropertieS Of ACHIONS........couiiiieiie et 56

10.6. Properties Of ENQUITTES...........ooiiiiiiieeeeeees e 56

10.7. Properties Of Data ItemS.........ccveiieeeriereeeseee e 57

10.8. Properties Of Candidatescccovviviieiieciie e 57

10.9. Properties Of ArQUMENESccviiiiiiieeeeeees e 58

10.10. PropertieS Of ParameELersScccocceieeieeie e 58

10.11. PropertieS Of SOUICES.........ccoeeiieeieeieeite et este ettt 58

10.12. Properties Of Warning Conditions...........ccccceeveeviieneeciiecsee e 59

11. PROfOrma Built-1N OPEratorS..........ooeverieieieeieesesie s 59

11.1. L LD QO] o= = (o OSSR 59
11.1.1. Arithmetic Operators “+7, “=7 7 .. e 59
11.1.2. ArithmetiC OPErator “/”ooeieeeeierere e 60
11.1.3. Comparison Operators “>", “<” *>="4=>" “<=" “=< “=" “1=")
<> 60
11.1.4. Boolean Operators “and”, “Or”cccocereererieeneese e s 62
11.1.5. Text Concatenation OPErator “#’cccccevieevereereereeseesesseeseessesseens 62
11.1.6. Membership Operators “includes’, “include’, “oneof”c.......... 63

11.2. PrefiX FUNCLONS......ooie e e 63
11.2.1. Conditional OPErator “if”ccoceirierere e 63
11.2.2. Unary MinuS OPErator “=”ccccoeeveeieeseesiesieeseesseeessseessessessseesseseens 64
11.2.3. The functor “ISKNOWNccoiiiiiiieneesiee e e 64
11.2.4. Boo0lean OPEerator “NOL”cceeoeeeeiereniesesie s s 65
11.2.5. OPErator “COUNTccoouiiiieiriesiee e enteesee e see e sae e e saeesreessseenseas 65
11.2.6. OPEraor “SUM”oooiiieeiiieeesies e e s e e sae e ssse s ensae s sneeesnnes 65
11.2.7. OPEraOr “IMBX”ccoeieiiieeireeiesiee sttt sne e 66
11.2.8. OPEratOr “IMINccceeeeeeesieeeieseeseesseeeesree e seesseesseeseesseesseeessseessessenns 66

11.2.9. Operator “Nth”cc.oooeceeceee e s 67
11.2.10. Operators “is_dormant”, “is_in_progress’, “is_discarded” and
“IS_COMPIELEA" ettt 67

11.2.11. Operators “in_progress time’, “discarded time” and
o0 101 = <o I (] 1 1SR 68
11212, OpErator “UNION"coererereeieiesiesse st e s sne e 68
11.2.13. Operator “diff” ...oceeeeceeee e 68
11.2.14. (7015 = (0 g 1115 65 o (SRS 69
11215, Operator “aDS’........ccoooiiiririreeieee e 69
11.2.16. (@07 - (0] g = o PSP SRRI 69
11.2.07. OPErator “IN" oot nre e 70
11.2.18. (@01 0] SRS | o SRS 70
11.2.19. OPEIALOr “COS ..ottt e e 70
11.2.20. OPEralor “1aN”cocceee e 71
11.2.21. (@01 0] G- | SO 71
11.2.22. OPEIaOr “ACOSiieiiieeitieie e 71
11.2.23. (@015 2= (0] ghur £ PSP SRRI 72
11.2.24. Operator “random’ooueiiieie e 72
12. LoA0iNG GUIAEIINES.coeeieieiereeeteeee e 72
12.1. The Operation LoadGuideling(G)cccceveereeieseeie e see e 73
12.2. The Operation InstantiateTask(G,T, C) ...oooveveeveeneereciee e 73
12.3. The Operation InstantiateComponent(G, Cr , A). coevveeveeciecvee e 75
12.4. The Operation SetComponentAttribute(C,Cp,A)....ocvvvereriiirerenenee 75
12.5. The Operation SetTaskAttribute(G,CALL)......ccceveeveee e 77
12.6. The Operation InstantiateCandidate(D,Cand)...........ccceeveeeieeveeccieenieee, 78
12.7. The Operation InstantiateArgument(C,A)ooeverererenieeeere e 79
12.8. The Operation InstantiateSoUrce(C,S)cevvrreereereeieseeressee e see e 80
12.9. The Operation InstantiateDataltem(Def).coccveveeviiiieceee e 8l

Part 1. Context Free Syntax

1. Introduction

A syntactically correct PROforma guideline must conform to the BNF and lexical
grammar laid out in part | of this document. Furthermore it must conform to the
context sensitive constraints laid out in part |1. Every expression must be type-correct
in the sense that its inferred type (1¢.1) is ot unt ypeabl e. Furthermore the use of
identifiers within the guideline must satisfy the contextual constraints laid out in 6.

2. Lexical Grammar

PROforma’s BNF syntax is defined in terms of the following lexical tokens

A reserved word is any text string that appears in double quotes in the BNF
productions set out in 3.2 . For example the appearance of the string
“completed” in the BNF should be taken as indicating that the lexical analyser
recognisesthe string conpl et ed areserved word.

An atom consists of either
0 A text string which consists of one or more underscores or non
whitespace al phanumeric characters and which does not begin with a
digit,eq. prol234 Fornma,or P.
0 A pair of single quotes enclosing a sequence of zero or more characters
which may contain any character other than an unescaped single quote,
eg."pRo \':: MW

Atoms are represented in the BNF by the symbol <atom>

Aninteger is an optional minus sign (*-’) followed by one or more digits.
Integers are represented in the BNF by the symbol <integer>

A float is an optional minus sign (‘-") followed by either
0 asequence of zero or more digits followed by a period (*.") followed
by one or more digits, or
0 asequence of one or more digits followed by a period (*.”) followed
by zero or more digits.
optionally followed by a sequence consisting of one of the letters “e”, “E”,
“d”, or “D” and then one or more digits.

Floats are represented in the BNF by the symbol <float>.

A double quoted string isa pair of double quote characters enclosing a
sequence of zero or more characters which may contain any character other
than an unescaped double quote, e.g. “pRo " z”:: Ma”. Double quoted
strings are represented in the BNF by the symbol <double_quoted_string>

White Space means any sequence of one or more spaces, newlines, carriage
returns or tabs. White space is not represented in the BNF.

A comment isthestring / * * followed by any sequence of characters that does
not include the string * */ followed by thestring **/ . For example

[** This is a conment **/

Comments are not represented in the BNF.

The lexical analyser converts ASCII text into tokens by starting at the beginning of
the text and following this procedure:

1. Identify for the longest string that matches one of the lexical rules above, if
the longest string matches more than rule then use the rule that comes first in
the list above (e.g. the string conpl et ed isinterpreted as a reserved word
rather than an atom because the rule for reserved words comes first).

2. If the string identified was not white space and not a comment then add the
appropriate token to the stream of tokens to be parsed by the BNF. For
example if you have recognised an atom then add <atom> to the stream of
tokens.

3. Unlessthe end of the text has been reached, start at the end of the string that
has just been recognised and repeat steps 1,2,3.

3. BNF Syntax

3.1. Assumptions and Notation

The Backus-Naur Form (BNF) syntax of PROforma 1.0 given in Y3 assumes that the
ASCII text defining a PROforma guideline has been converted into lexical tokens by a
lexical analyser whose grammar is defined in 12.

The following notational conventions are used in the BNF syntax:

a) Roman text strings enclosed in angle brackets, e.g. <task> denote non-terminal
symbols.

b) Italic text strings enclosed in angle brackets, e.g. <atom> denote tokens
recognised by the lexical analyser that are not reserved words.

c) Text strings enclosed in double quotes represent reserved words recognized by the
lexical analyser.

The root symbol of the BNF syntax is <process>

3.2. BNF Productions

<abort_condition> ::= “abort” “:.” <expression>*“;"

<action_attribute> ::= <task_attribute>
<action_attribute> ::= <procedure>

<action_attribute list> ::= <action_attribute> <action_attribute list>

<action_attribute list> ::= <empty>

<action task >::= “action” “::” <atom> ";” <generic_attribute list>
<aCti0n_aItribute_|ist> “oend” “action” “.”

<argument> ::= “argument” “::” <support> “,” <expression>
<optiona_argument_attribute list>*“;”

<assertion> ::= <assignment>
<assertion> ;= <assertion> “and” <assertion>

<assertion> ;= “(“ assertion “)”

<assignment> ::= <atom> “=" <expression>
<autonomous> ::= “autonomous’ “::” <yes or_no>*“;"
<candidate> ::= “candidate” “::” <candidate name> “;”

<generic_attribute list> <candidate attribute list>
<candidate_attribute> ::= <argument>
<candidate attribute> ::= <recommendation>
<candidate_attribute> ::= <priority>

<candidate_attribute list> ::= <candidate attribute> <candidate attribute |ist>
<candidate attribute list >::= <empty>

<candidate_name> ::= <atom>
<caption> ::= “caption” “:” <expression> “;”
<choice_mode> ::= “choice_mode” “::” <choice_mode_type> “;"

<choice_mode_type> ::= “single”
<choice_mode type> ::= “multiple”

<complex_atom> ::= <atom>“:" <atom>
<component> ::= “component” “::” <atom>*“;” <component_attribute |ist>

<component_attribute> ::= <autonomous>
<component_attribute> ::= <optional>
<component_attribute> ::= <termina _att>
<component_attribute> ::= <param_value>
<component_attribute> ::= <schedule_constraint>

<component_attribute> ::= <ltwh>
<component_attribute> ::= <number_of cycles>
<component_attribute> ::= <cycle_until>

<component_gattribute> ::= <cycle repeat>

<component_attribute list> ::= <component_attribute> <component_attribute list>
<component_attribute list> ::= <empty>

<constant> ::= <number>
<constant> ::= <textual _constant>

<context> ::= “context” “::" <atom> “;”
<cycle repeat> ::= “cycle_repeat” “::" <expression> <time_unit>“;”
<cycle until> ::=*“cycle_until” “::” <expression>“;”

<data_attribute> ::= <range>
<data_attribute> ::= <default_value>

<data _attribute> ::= <true value>
<data_attribute> ::= <false vaue>
<data_attribute> ::= <mandatory_validation>
<data attribute> ::= <derivation>
<data_attribute> ::= <warning_condition>
<data_attribute> ::= <unit>

<data attribute list> ::= <data_attribute> <data attribute list>
<data_attribute list> ::= <empty>

<data item> ::=“data’ “::” <data_name> “;” <data type definition>
<generic_attribute list> <data_attribute list> “end” “data” “.”

<data_name> ::= <atom>
<data_name> ::= <complex_atom>

<data type> ::= <atom> (must be either “ text” , “ integer” , “ boolean” ,
“ datetime” , “ date” , “time”, “real” , “setof text”,
“setof_integer”, or “ setof real”)

<data type definition> ::= “type” “:” <data type>*“;"

<decision_attribute> ::= <task_attribute>
<decision_attribute> ::= <candidate>
<decision_attribute> ::= <source>
<decision_attribute> ::= <choice_mode>
<decision_attribute> ::= <support_mode>

<decision_attribute list> ::= <decision_attribute> <decision_attribute list>
<decision_attribute list> ::= <empty>

<decision_task> ::= “decision” “::” <atom>"“;” <generic_attribute list>

<decision_attribute list> “end” “decision” “.

<default_value> ::= “default_vaue’ “::” <expression> “;”

<derivation>

<description> ::= “description”

" <expression> “;

“derivation” “:

113 “..n

;.7 <expression> “;

<directive list> ::= <atom>“;” <directive list>
<directive list> ::= <empty>

<empty> ::=

<enquiry_attribute> ::= <task_attribute>
<enquiry_eattribute> ::= <source>

<enquiry_attribute list> ::= <enquiry_attribute> <enquiry_attribute list>

<enquiry_attribue _list> ::= <empty>

<enquiry_task> ::= “enquiry
<generic_attribute list> <enquiry_attribute list>

<expression>
<expression>
<expression>
<expression>
<expression>

<expression> ::
<expression> ::
<expression> ::
<expression> ::
<expression> ::=
<expression> ::
<expression> ::
<expression> ::
<expression> ::
<expression> ::=
<expression> ::
<expression> ::
<expression> ::
<expression> ::=
<expression> ::=
<expression> ::
<expression> ::
<expression> ::

<expression>

<expression> ::
<expression> ::
<expression> :
<expression> :
<expression> ::
<expression> ::

10

<at0m> i ;n

“end” “enquiry” “.

1:= <atom>

::= <complex_atom>

;= <integer>

.= <float>

::= <double quoted string>

“(* <expression> “)”

“result_of” “(* <atom> “)”

“Netsupport” “(* <atom>“,” <atom>*“)”
“netsupport” “(* <atom>*,” <atom> “)”
<expression> “or” <expression>
<expression> “OR” <expression>

= <expression> “and” <expression>
<expression> “AND” <expression>
<expression> “#" <expresson>
<expression> “++" <expression>
<expression> “<” <expression>

= <expression> “<=" <expression>

= <expression> “=<" <expression>

= <expression> “>" <expression>
= <expression> “>=" <expression>
= <expression> “=>" <expression>
= <expression> “=" <expression>
= <expression> “!=" <expression>

;1= <expression> “+” <expression>
= <expression> “-” <expresson>

= <expression> “*” <expression>

;= <expression> “/” <expression>

:= <expression> “include’ <expression>
<expression> “includes’ <expression>
<expression> “oneof” <expression>

<expression> ::= “-” <expression>
<expression> ::= <functor_name> “(* <expression_list>“)"
<expression> ::= “[* expression_list “]”

<expression _list> ::= <empty>
<expression_list> ::= <nonempty_expression _list>

<false value> ::= “false value” “::” <textual_constant>“;”
<functor_rame> ::= <atom>

<generic_attribute> ::= <caption>
<generic_attribute> ::= <description>

<generic_attribute list> ::= <generic_attribute> <generic_attribute list>
<generic_attribute list> ::= <empty>

<generic_task> 1= “task” “::" <atom>“;” <generic_attribute_list>
<task_attribute list> “end” “task” *.”

<goal> ::= “goal” “::" <expresson>*“;”

<ltwh> ::= “ltwh” “::” <integer>“,"<integer> “"<integer>“,"<integer>";"
<mandatory> ::= “mandatory” “::” <yes or_no>"“;"
<mandatory_validation> ::= “mandatory_validation” “::” <expression> *“;”

<nonempty_expression_list> ::= <expression>

<nonempty_expression list> ::= <expression> “,” <nonempty_expression_list>
<nonempty_parameter_list> ::= <parameter>

<nonempty_parameter_list> ::= <parameter> “,” <norempty_parameter_list>

<number> ::= <integer>
<number> ::= <float>

<number> ::= “- " <number>
<number_of_cycles> ::= “number_of_cycles’ “::" <expression>*“;"
<optional> ::= “optional” “::” <yes or_no>"“;"

<optional_argument_attribute list> ::= <empty>
<optional_argument_attribute list> ::= “attributes’ <optional_argument_name>
<generic_attribute list> “end” “attributes’

<optiona_argument_name> ::= “argument_name” “:.” <atom>*“;”
<optiona_argument_name> ::= <empty>

<optional_data type definition> ::= <data type definition>

11

<optional_data_type definition> ::= <empty>

<optiona_directives> ::= “directives’ “::” <directive list> “end” “directives’ “.”
<optional _directives> ::= empty

<optiona_parameter_attribute list> ::= <empty>
<optional_parameter_attribute list> ::= “attributes’ <optional_data type_definition>
<generic_attribute list> “end” “attributes’

<param_value> ::= “param_vaue <assignment> “;

<parameter> ::= <atom> <optional_parameter_attribute list>

<parameter_declarations> ::= “parameters’ “::” <nonempty_ parameter list>

<plan_attribute> ::= <task_attribute>
<plan_attribute> ::= <component>
<plan_attribute> ::= <abort_condition>
<plan_attribute> ::= <terminate_condition>

<plan_attribute list> ::= <plan_attribute> <plan_attribute list>
<plan_attribute list> ::= <empty>

<plan _task> ::= plan” “:7 <atom>“;” <generic_attribute list plan_attribute list>
d” 1] plan” (13}

<postcondition> ::= *postcondition <assertion> “;

<precondition> ::= “precondition” “::" <expression> “;”

<priority> ::= “priority < integer>

<procedure> ::= “procedure” “::” <expression> “;”

<process> ::= optional_directives plan_task top_level component_list

<range> ::= “range

<range list>

<range_list> ::= <expression>
<range _list> ::= <expression>

range list

<recommendation> ::= “recommendation” “::” <expression> “;"
<schedule _congtraint> ::= “schedule _constraint” “::” “completed” *“(“<atom>")" “;”
<source> ::= “source” “::" data_name“;” source attribute list

<source attribute_list> ::= <source_attribute> <source attribute list>
<source_éattribute_list> ::= <empty>

12

<source_attribute> ::= <generic_attribute>
<source_attribute> ::= <mandatory>

<support> ::= “for”
<support> ::= “aganst”
<support> ::= “confirming”
<support> ::= “excluding”

<support> ::= <number>

<support_mode> ::= “support_mode” “::" <support_mode _type> ;"
<support_mode_type> ::= “symbolic”
<support_mode _type> ::= “numeric”

<task> ::= <plan_task>

<task> ::= <decision_task>
<task> ::= <action_task>
<task> ::= <enquiry_task>

<task> ::= <generic_task>

<task_attribute> ::= <precondition>
<task_attribute> ::= <wait_condition>
<task_attribute> ::= <postcondition>
<task_attribute> ::= <goal>

<task_attribute> ::= <trigger>
<action_attribute> ::= <context>
<task_attribute> ::= <parameter_declarations>

<task_attribute list> ::= <task_attribute> <task_attribute list>
<task_attribute list> ::= <empty>

<terminal_att> ::= “termina” “::" <yes or_no> “;”

<terminate_condition> ::= “terminate”’ “::” <expression> “;

<textual _constant> ::= <double quoted string>
<textual constant> ::= <atom>

<time_unit> ::= “seconds’
<time_unit> ::= “minutes’
<time_unit> ::= “hours’
<time _unit> ::= “days’
<time_unit> ::= “weeks’

<top_level_component> ::= <task>
<top_level _component> ::= <data_item>

<top_level _component_list>::=<top_level component> <top_level component_list>
<top_level_component_list> ::= <empty>

13

<trigger> ::= “trigger” “::” <atom>*;”

<true_value> ::= “true value” “::” textual_constant “;”

<unit> = “unit” “::" textual_constant “;”

wait_condition ::= “wait_condition” “::” <expression> “;"

<warning_condition> ::= “warning_condition” “::” <constant> “,” <expression> “;"

generic_attribute list

<yes or_no> ::=<atom> (must be either “yes’ or “no”)

3.3. Note on <yes_or_no> and <data_type>

The BNF specifies that <yes or_no> must be an atom and there is a“ side condition”
to the effect that this atom must be one of the strings “yes’ or “no”.

The reason why we do not simply put in productions <yes or_no> ::=“yes’ and
<yes or_no> ::=“no” isthat thiswould imply that “yes’ and “no” were reserved
words of the language (see 12) and hence could not be used in places where a
reserved word would unacceptable,. Specifically this would mean that “yes’ and “no”
could not be used as names of decision candidates, which would be rather irksome.

Similarly <data_type> must be one of the atoms “text”, “integer”, “boolean”,

“datetime’, “date”, “time’, “real”, “setof text”, “setof _integer”, or “setof real”.
However these are not PROforma reserved words.

14

Part 11: Context Sensitive Syntax

4. Type Inference Rules

The type of aPROforma <expression> E iseither t ext, i nt eger, real
setof text, setof real, setof _integer, setof_anything,
trut h_val ue, orunt ypeabl e and can be inferred using the rules laid out below.

An expression is type-correct iff itsinferred typeis not unt ypeabl e.

In the rules below italicised words in angle brackets, e.g. <atom> refer to terminal
symbols of the BNF set out in 3.2 and roman strings in angle brackets, e.g.
<parameter_declaration> refer to nonrterminal symbols in that grammar.

4.1. Type Inference Rules for an Expression E

1. If Eisof the form < atom> then

a. If E iswithin the scope of a <parameter_declaration> of the form
Name[“:” DataType] “;” where Name = E and where the use of
sguare brackets indicates that the data type is optional then

I. If DataType is absent then thetype of E ist ext .
ii. Elsethetypeof E isrelated to the DataType in the manner set
out in 14.3.

b. Elseif thereis adataitem whose nameis E then the type of E is
determined by the type of that data item, according to the mapping laid
out in 14.3.

c. Elsethetypeof Eist ext .

Elseif E is of the form <integer> then the type of E isi nt eger .
Elseif E is of the form <float> then thetype of Eisr eal .
Elseif E is of the form <double_quoted_string> then the type of E ist ext .
Elseif E isof theform “(" E¢ “)” where EC is an <expression> then the type
of E isthe same as the type of E¢
Elseif E is of the form “result_of” “(” <atom>“)” thenthetypeof Eist ext .
Elseif E is of the form “netsupport” “ (" <atom> “,” <atom> “)”then the type
of Eisi nt eger.
Elseif E isof theform “[* “]” then thetype of E isset of _anyt hi ng.
Elsif Eisof theform“[” E1 “,” ... “,” En“]” where n>0then

a Ifforadl isuch that (1£iEn) the expression E; hastypet ext then E

hastypeset of _t ext.

arwn

N o

© ®

15

16

. Elseif for dl i such that (1£i£n) the expression E; hastypei nt eger

then E hastypeset of _i nt eger .
Elseif for al i such that (1£i£n) the type of E; iseither i nt eger or

fl oat thenthetypeof Eisset of fl oat .
. Otherwise E is of typeunt ypeabl e.

10. Elseif Eisof ether theform E; Op E; or theform Op “(* E1 “,” ... “’En")”
where E; ... E, are <expression>s and Op is either an <infix_op> or a
<functor_name> and T;... T, respectively are the types of the expressions
E;...E, then

a If there exists a unique type T+ 1 such that one of the allowed types for
Op (see 1) is(T1 " ..." Th)® Ty thenthetypeof E iSTyes.

b. Elseif there exist types TG ,...,T¢ , Th+1 Such that one of the allowed
typesfor Op (seeT11) is(T¢ " ..." T¢)® Tn1 and, for all i such that
(1£i£n) either T¢=T, or else T; can be promoted (14.2) to T¢ then the
typeof E isTh+1. If Op has more than one type that meets this
reguirement, then use the one that comes first in its list of types.

c. Elsethetypeof Eisunt ypeabl e.

4.2. Type Promotion Rules

=

i nt eger canbepromotedtor eal

set of i nt eger canbepromotedtoset of real .

3. setof _anyt hi ng canbepromotedto set of _t ext,set of _i nt eger
or setof real.

4. No other type promotions are possible.

N

4.3. Relationship Between Declared And Inferred Types
For Data Items And Parameters.

The <data _type> that occurs in the declaration of a parameter or a data item has the
syntax

<data_type> = <atom>

with the constraint that the <atom> must be one of “text”, “integer”, “boolean”,
“datetime”, “date’, “time”, “real”, “setof text”, “setof integer”, or “setof real”

The relationship between the words “text”, “integer” etc. as used in PROforma type
declarations and the types that are actually inferred for the parameters and data items
is dlightly complicated in that

a) The engine treats data items and parameters declared to be “boolean” in the
same way as data items declared to be of type “text”. A “boolean” dataitemis
just atext data item for which the user is asked two choose between two
different strings (e.g. “yes’ and “no”) when supplying a value.

b) Dataitems and parameters declared to be of type “date’, “datetime”’ or “time”
are treated by the engine in exactly the same way as if they were declared to
be of type “real”. The declared type is used as a hint to the API that the data
should be entered by the user in some date/time format and then converted to a
real number in an implementation dependent manner before being sent to the
engine.

17

In summary the relationship between the declared type for data items/parameters and
the types inferred for references to them are as follows:

Declared Type Inferred Type
Text t ext
I nteger I nt eger
Boolean t ext
Datetime r eal
Date r eal
Time r eal
Real r eal
setof text set of _text
setof _integer set of i nteger
setof red set of real

5. Scope Rules

The following rules define the scopes of identifiers used to name tasks, data items,

parameters, and candidates.

The scope of atask nameis global.

The scope of a dataitem name is global.

The scope of a candidate name is global.

If a parameter name P is introduced in a <parameter_declaration> which is
part of the <task> declaration for some task named T then P may be referred to

in

0 The precondition of T.

0 Theright hand side of an assignment in the postcondition of T.
0 Thedefinition of an argument or recommendation rule for a candidate

of T (if Tisadecision).

0 Theleft hand side of a <param_value> assignment occurring within a
<component> that instantiates T, i.e. a <component> that is of the form
“component” “::” T “;” {<component_attribute> } See the example

below.

o0 Theright hand side of a <param_value> occurring within the definition
of a<component> of T (if T isaplan). See the example below.

If a parameter name P appears outside the scope of that parameter then it is
interpreted as denoting the string “P” rather than the parameter P (see example

below).

18

5.1. Example Of Use Of Parameters

The example below illustrates correct and incorrect use of parameter names.

plan :: Protocol 35 ;
caption :: 'Protocol 35' ;
component :: planl;
param_vaue:: P= 1;/**lega since P isaparameter of planl **/
end plan..

action :: actionl ;

parameters:: Q, S, T;

precondition:: Q=1 ; /**legal since _Q is a parameter of actionl**/
end action .

enquiry :: enquiryl;
parameters:: R;
source:: a;
mandatory :: yes;
end enquiry .

plan :: planl ;
parameters:: _P;
component :: actionl ;
param_vaue: Q= a; /[**correct _Q isaparameter of actionl and is thus
allowed to appear on the LHS of this
assignment**/

param _vaue:: S=_T;/**legad BUT _T will be taken to denote the string
“ T since the scope of the parameter _ T does
include the RHS of this assignment **/

param_value:: P=1; /[**illega!! _P can appear on the RHS
but not the LHS**/

component :: enquiryl ;
param_value:: R= P;/**lega R isaparameter of enquiryland Qisa
parameter of planl**/
end plan..

data:: a;

type :: integer ;
end data .

19

6. Contextual Constraints

In addition to conforming to the BNF and type system a valid PROforma guideline
must obey a set of contextual constraints. These concern the use of task names,
candidate names and built-in operators and functions.

Definition 1: a string with the syntax <task> is referred to as atask definition for a
task named T where T is the <atom> following the first occurrence of the reserved
word “::” in that string. For example the string

action :: action2 ;
end action.

is atask definition for atask named action2.

Definition 2: a string with the syntax <candidate> is referred to as a candidate
definition for a candidate named C where C is the <atom> following the first
occurrence of the reserved word “::” in that string. For example the string

candidate :: mycand ;
recommendation :: Netsupport(decisionl, mycand) >=1;

is a candidate definition for a candidate named mycand.

Definition 3: a string with the syntax <component> is referred to as a component
definition for a component named C where C is the <atom> following the first
occurrence of the reserved word “::” in that string. For example the string

component :: action2 ;

is a component definition for a component named action2:

6.1. Constraints On The Use Of Task, Candidate And
Parameter Names.

1. If aplan definition contains a component definition for a component named T
then the guideline must contain exactly one task definition for atask named T.

2. If anexpression of theform “result_of” “(” T “)” occursin anywherein a
guideline then the guideline must contain a task definition for atask named T.

3. If an expression of the form “netsupport” “(" T “,” C “)” occurs anywherein a
guideline then the guideline must contain a task definition for atask named T

20

and that task definition must contain a candidate definition for a candidate
named C.

4. If acomponent definition for a component named T containsa
<param_vaue> assignment of the form P “=" E then the task definition for
task T must include a <parameter> declaration for the parameter P.

6.2. Note On Use Of Built-In Functions and Operators.

The type congtraints laid out in 14.1 ensure that wherever an <infix_op> or
<functor_name> appears in an <expression> the operator or functor referred to will be
one of the PROforma built-ins listed in Y11 and will be applied to the correct number
of arguments. Hence there is no need to apply additional contextual constraints on the
use of these operators.

21

Part I11: Semantics

7. Basic Concepts

22

7.1. Guidelines, Tasks, and Data Iltems.

a)

b)

f)

9

A guideline has a set of guideline components. Where no ambiguity can arise
we shall refer to these simply as components

We assume that there exists an infinite set of Component Identifiers. These are
abstract entities that can be used to uniquely identify components within a
guideline

Each guideline component is one of a Task, a Data Item or a Subcomponent.
A Task isone of a Generic task, aPlan, aDecision, an Enquiry, or an Action.

A Subcomponent is one of a Source, a Candidate, a Parameter, or a\Warning
Flag.

The class of acomponent isone of dat a_i t em generi c_t ask, pl an,
deci si on,enqui ry,acti on,source, candi dat e, par anet er , or
war ni ng_f | ag. In other words the class tells you whether the component is
aData Item, a Task, or a Subcomponent and, in the last two cases, what sort of
Task or Subcomponent it is.

A Guideline component has a set of named properties. The name of a
property is atext string and the value that it has for a particular component is a
PROforma value (see section 7.4). Asan example each task has a property
named description whose value is a text string.

For each class of component there is afixed set of allowable property names
and for each property name and component class there are restrictions on the
values that the property may take.

The properties of each class of component are set out in detail in 10.

Some of the properties of a component, such as its description, remain
constant throughout the enactment of a guideline. Others, such as its state,
change their value as enactment progresses.

Some properties are assigned initial values in the textual description of a
PROforma guideline. However other properties, such as the state of atask, are
given values by the engine.

7.2. PROforma Expressions.

a) A PROforma expression is atext string obeying the syntax given for
<expression> in the PROforma BNF. Where no ambiguity can arise we shall
refer to PROforma expressions smply as expressions.

b) At any given time an expression has a value. The vaue of the expression may
change as a guideline is executed. The value of an expression is a PROforma
value (as set out in 17.4).

The evaluation of expressionsis explained in detail in 0.

c) Every expression has atype, which may beoneof t ext, i nt eger, real,
setof text,setof real, setof_anything, truth_val ue,or
unt ypeabl e Therules by which the type of an expression may be inferred
are described in f¢.

7.3. PROforma Assertions

A PROforma assertion is atext string having the syntax of <assertion>

7.4. PROforma Values

A PROforma value is one of:

1. Theconstant unknown.

2. Oneof the constantst r ue, or f al se.

3. Oneof the constantsdor mant , di scarded, i n_progress,
conmpl et ed, synbolic,nuneric,multiple,single, for,
agai nst, confirmng, excluding, data_ item

generi c_task, plan, decision, enquiry, action,
source, candi date, paraneter, orwarning flag.

A number (either integer or floating point).

A text string (which may, in some cases be a PROforma expression).

A Component Identifier

A finite sequence of PROforma values. We use angle brackets to denote
sequences, e.g. a1,2,3,4,5

No ok

7.5. Task States

A task has a property named st at e, which may take the values dor mant ,
i n_progress,di scarded,orconpl et ed.

The intended meaning of these states is as follows. A task isdor mant if the
PROforma engine has not yet considered executing it, atask isdi scar ded if the

23

engine has explicitly decided not to execute it, atask isi n_pr ogr ess ifitis
currently being executed, and atask isconpl et ed if its execution has finished.

Tasks change state when the operations such as Start (18.5.3), Discard (18.5.4) or
Complete (18.5.5) are performed.

8. The Abstract PROforma Engine.

In order to define the operational semantics of PROforma we give here an abstract
definition of the state of a PROforma guideline and an abstract definition of how that
state changes when various operations are performed.

The operational semantics are defined in terms of operations which change the
guideline state, conditions which may, at any given time, be true or false, and
functions which may be used to calculate a PROforma value (7.4).

Operations, conditions, and functions may take parameters, which are usually either
component identifiers or text strings. Operations, conditions, and functions may also
refer to the current guideline state. It might be more formally correct to insist that the
guideline state be passed as a parameter, however, in order to avoid cluttering our
notation we shall not do so in this document.

Any actua implementation of a PROforma engine must define itself in terms of the
abstract engine. In other words the data returned by any method in the engine’'s AP
must have a precisely defined relationship to the abstract engine’s state. And any state
changes brought about by an API function must be definable in terms of the
operations specified in the definition of the abstract engine.

The definition of the operational semantics describes six operations as being public.
These are LoadGuideline, RunEngine, SetEngineTime, ConfirmTask,
CommitCandidates, AddData The intention isthat an API could be defined in terms
of just these six operations. All the other operations in the description of the engines
semantics exist solely in order to help define the public operations.

8.1. Guideline State

The state of a guideline is defined by following four data structures.

1. A Propertiestable, which contains the current values of the properties of the
guideline components.

2. A Changes table, which contains a set of changes that have been requested to
properties of guideline components.

3. Alogical flag Exception, whichis true if an abnormal event has occurred in

the processing of a guideline operation and false otherwise.

A real number known as the EngineTime.

An real number known as the RandomNum which is used to generate random

numbers.

oA

24

Both the Properties and Changes tables have three columns; the first contains
Component Identifiers, the second property names, and the third PROforma values.
We assume that the ordering of the rows in these tables is immaterial and that neither
table may contain duplicate rows i.e. two different rows in a given table must have
different values in at least one column.® The operational semantics guarantees that, at
any given time the Properties table only assigns one value for a given property of a
given component.

Asanillustration the, tablesin Example 1 indicate that the st at e of the task
actionl currently hasthevaluei n_pr ogr ess, andthat arequest has been
made to change the value of that task’s st at e toper f or ned.

Properties Table
Component ID | Property | Value
actionl state i n_progress
actionl procedure | nyprocedure
Changes Table

Component ID | Property Value

actionl state per f or med

Example 1

In the sections that follow we shall explain how rows get added to the tables and what
the intended meanings of those rows are.

8.2. Definitions

Definition 4: The Task Set of aguideline is the set Component Identifiers identifying
tasks. More formally it is the set of all componert identifiers C such that

! Mathematically speaking each table is aternary relation. The Changes table is a subset of CxPxV
and the Properties table is afunction which is a subset of (CxP)® V where C is the set of component
identifiers, P isthe set of property names, andV isthe set of PROforma values.

25

(C,cl ass,T) appearsin the Properties Tablewhere T isone of generi c_t ask,
pl an,enqui ry,deci si on,oracti on.

Definition 5: A Task ID is a Component Identifier that is a member of the guideline’s
Task Set.

Definition 6: Theterms Data Item |d, Candidate Id, Source Id, Parameter 1d, and
Warning Flag Id refer to component identifiers and are defined in an analogous
manner to the term Task Id.

8.2.1. Relationship to The PROforma Syntax

The initia state of the guideline is related to its representation in PROforma syntax by
the description of the LoadGuideline Operation, which is given in Y12.1.

8.3. Public Operations

An Operation is a process which can change the state of the guideline and which may
take parameters.

This section lays out the public operations that the API to an implementation of
PROforma must make available to external systems. Sections 8.4 and 8.5

describes private operations used in the definition of the public operations.

In the following sections each operation, condition, and function referred to in the
operational semantics is given a definition which is intended to precisely specify what

it does by reference to the guideline state, and may be given a more informal
description.

8.3.1. The LoadGuideline Operation

The LoadGuideline operation takes one parameter which is atext string obeying the
syntax of <guideline> inthe PROforma BNF. It is fully defined 112.1.

8.3.2. The RunEngine Operation
Parameters: none
Description:
The Engine Cycle is the basic means by which enactment of a PROforma guideline

proceeds. Its definition refers to two operations Review and EnactChanges which are
respectively defined in 18.5.1 and 18.4.

26

Definition:

1. Set RandomNumto real valuein the range O to 1 inclusive. We do not define
how this value is chosen but the intention is that it should be generated in a
pseudo-random manner.

2. For every task identifier T in the guideline' s task set, perform the suboperation
Review(T).

3. If the Changes table is empty then stop, otherwise perform the EnactChanges
suboperation.

4. If the Exception flag is true then stop, otherwise repeat again from step 1.

Note: in step 1 we do not specify the order in which tasks are Reviewed . However
the definition of the engine's operational semantics in fact ensures that the state of the
guideline after an engine cycle has been performed does not depend on the order in
which tasks are Reviewed during that engine cycle.?

8.3.3. The Operation SetEngineTime(X)

Parameters:

Xisarea number.
Description:
Update the EngineTime Note that performing this operation is the only way to
change the Engine Time. An application that wishes events to take place in “real”
time must therefore make sure that the SetEngineTime method is performed before
every invocation of RunEngine and that the time it sets is as close to the “real” time as
possible.
Definition:

1. Setthe EngineTimeto X.

8.3.4. The Operation ConfirmTask(T)

Parameters:
T isatask identifier.
Desciption:

The API performs the ConfirmTask operation when it has received confirmation from
an exterral agent that a given task has actually been performed.

2| shall not prove this assertion in this document, but it is, | hope not to difficult to see that it is true.

27

Definition:

1. If the Properties Table containsarow (T, conf i r med, V) for someV then
remove that row.

2. Add (T, confirmed,true)tothe Propertiestable.

8.3.5. The Operation CommitCandidates(T, <C4, ..., Cy>)

Parameters:

T isatask Identifier, which should identify a decision
<Cy, ..., Gy> isasequence of Component identifiers, each of which should
identify one of the decision’s candidates.

Description:

An API performs the CommitCandidates operationwhen an external agent indicates
that it wishes to commit to one or more candidates of a decision.

Definition:

1. If the Properties Table containsarow (T, r esul t , R) for some R then remove
that row.

2. If the properties table contains (T, choi ce_node, nul ti pl e) then add
(T,resul t,ac, ..., G to the Properties table, else if n=1 then add
(T,resul t, C) to the Properties table.

3. Perform ConfirmTask(T)

8.3.6. The Operation AddDataValue(D,V)

Parameters:

D is a component identifier identifying either a dataitem or a parameter.
V isa PROforma value.

Definition:
1. If thereisavalue V¢such that the Properties table contains the row
(D,val ue,V(¢ then remove that row.

2. Addtherows (D,val ue,V)and (D,r equest edf al se) to the Properties
table.

28

3. If thereis an expression E such that the Properties table contains
(D,mandat ory_val i dat i on, E) then remove any row of the form
(D,mandat ory_val i dati on_act i vat ed, V) from the the Properties
table and replace it with (D,mandat ory_val i dati on_acti vat ed, VQ
where V¢ Evalutate(E,R) and Ris the component identifier of the root plan of
the guideline.

4. If there is a sequence of component identifiers &4, ... , Whii such that the
Properties table contains (D,war ni ng_condi ti ons,aM, ..., Wi) then
for each | such that i £i£n :

a. Find the unique expression E such that the Properties table contains
(W, expr essi on, E)

b. Remove any row of the form (W, act i vat ed, V) from the the
Properties table and replace it with (W,act i vat ed, VO where
V¢=Evalutate(E,R) and Ridentifies the root plan of the guideline.

c. Perform ActualiseGenericProperties(W,R) where Ris the component
identifier of the root plan of the guideline.

8.3.7. The Operation SendTrigger(Trig)

Parameters:
Trig isatext string
Desciption:

Set trigger_acti ve property to truefor al taskswith the specified trigger
whose parent plans are in progress.
Definition:

For each task identifier T such that the Properties Table contains

(T,trigger, Trig) and there exists atask identifier P such that the Properties
table contains (T,par ent _pl an,P) and (P,st at e,i n_progress): add
(T,trigger_active,true) tothePropertiestable.

29

8.4. The Operation EnactChanges

Parameters. none
Description:

The EnactChanges operation performs the changes that get requested during the
performance of the RunEngine operation described in 18.3.2 .

Definition:
1. For every row in the Changes table:
a Let (C,P,V) denotethevauesinthe Component ID, Property, and
Vaue columns of that row.

b. If there exists a value V¢such that the Properties table contains the
row (C,P, V§ then remove that row.

c. If (C,P,V) istheonly row in the Changes table that specifies a
new value for property P of component C then add (C,P,V) to the
Properties table.

d. Otherwise, i.e. if there exists a value V®&such that V&* V and the
Changes table contains (C,P, V&), then set the Exception flag to
true and add (C,P,unknown) to the current properties table.

2. Empty the Changes table.

8.5. Operations Taking a Task Identifier As A Parameter

8.5.1. The Operation Review(T)

Parameters:
T isatask identifier.
Description:

The RunEngine operation (18.5.1) performs the Review operation for each task in the
guideline in order to determine what that task should do.

The definition of Review(T) refers to operations Initiaise, Start, Discard, and

Complete which are defined in sections 8.5.2,8.5.4, 8.5.5, and 8.5.3, and to the
conditions InitialiseConditions, StartConditions , DiscardConditions , and

30

CompleteConditions which are defined in sections8.6.1, 8.6.2, 8.6.3 and Error!
Reference sour ce not found.8.6.4
Definition:

If InitialiseConditions(T) is true then perform Initialise(T)

Else if StartConditions(T) is true then perform Start(T)

Else if DiscardConditions(T) is true then perform Discard(T)
Else if CompleteConditions(T) is true then perform Complete(T)
Else do nothing.

gk wbdpE

8.5.2. The Operation Initialise(T)

Parameters:

T isatask identifier.

Definition:
1. Add(T,st at e, dor mant) to the Changes table.
2. Add(T,cycl e_count, 0) tothe Changes table.
3. Add(T,start _at,unknown) to the Changes table.
4. Add(T,trigger_active, fal se)totheChangestable.
5. Add(T,nbr _cycl es_val ue,unknown) to the Changes table.
6. Perform InitialiseGenericProperties(T,T).
7. If the Propertiestable containsarow (T, par anet er s, <P1,..., Py>) then
for each P; (1EIEN):
o0 Add (Pj,value,unknown) to the Changestable.
o Perform InitialiseGenericProperties(P;, T).
8. If the Propertiestable contains (T,cl ass,deci si on) then:
a Add(T,resul t ,unknown) to the Changestable.
b. If the Propertiestable containsarow (T, candi dat es, <Cy ,..., C\>)

then for each C; (1EiEN) perform the operation InitialiseCandidate(C;).

9. If the Propertiestable contains (T,cl ass,act i on) then:
a. Add(T,act ual _procedur e,unknown) to the Changes table.

31

8.5.3. The Operation Start(T)

Parameters:
T isatask identifier.
Description:

The Start operation setsatask’sstatetoi n_pr ogr ess, increments its
cycl e_count , evaluates its parameters and initialises various other properties of
the task such as its sources.

It is important that to note that parameter values are evaluated within the scope of the
task’s parent. Thisis because parameter values are a property of the parent plan rather
than the task itself and it allows a parameter value assignment to refer to the
parameters of the parent plan.

Definition:
1. Add(T,state, i n_progress) tothe Changestable.
2. Add(T,start _at,unknown) to the Changes table.

3. (T,in_progress_ti nme, EngineTime) to the Changes table.

4. If the Propertiestable containsarow (T, cycl e_count , N)thenadd
(T,cycl e_count ,N+1) to the Changes table.

5. If the Propertiestable containsarow (T, par anet er s, <Py ,..., Px>)
then for each P; (1£iEN):

o0 If there exists an expression E and a component identifier Cp
such that the Properties table contains the rows
(Pi,expression,E) and (T,parent_plan,Cp) then let
V=Evaluate(E,Cp) and add (P;,vaue,V) to the Changes table.
Otherwise add (P;,value,unknown) to the Changes table.

o Perform ActualiseGenericProperties(P;, T).

o

6. If there exists an expression E such that the Properties table contains
the row (T,nbr_cycles expression,E) and there does not exist areal
number R such that the properties table contains
(T,nbr_cycles value,V) then:

0 LeV=Evauate(E,T) and add (T,nbr_cycles vaueV) to the
Changes table.

32

33

7. Perform the operation ActualiseGenericProperties(T,T).

8. Add (T, confirnmed, fal se) tothe Changestable.

9. If the Propertiestable contains (T, cl ass,enqui ry) and
(T,sour ces <S,...,.S¢) then, for each S perform the operation
InitialiseSource(S) asdefinein 18.5.12.

10. If the Properties table contains (T, cl ass, deci si on) and
(T,sour ces <S,...,S) then, foreach S :

(0]

If the propertiestable containsarow (S, dat a_i t em D)
where D is a component identifier and also contains arow
(D,val ue,unknown) then perform the operation
InitialiseSource(S) as defined in 18.5.12.

If the Properties table contains arow
(T,candi dat es ,<C;,...,Cx>) then for each C; (1£iEN)
perform the operation InitialiseCandidate(C;).

11. If the Properties table contains (T, cl ass, deci si on) then

o

If the Properties table contains (T,conf i r mat ory,f al se):

Find the identifiers of recommended candidates of T
(if any). The definition of a*“recommended” candidate
IS given below.

If there are one or more recommended candidates then
let C be the identifier of the recommended candidate
with the highest netsupport (if there is more than one
candidate with this netsupport value then pick the one
with the highest priority). Netsupport is calculated
using the function EvaluateNetSupport defined in
19.4.

Add (T,r esul t ,C) to the Changes table.

o] Otherwuaeadd (T,r esul t unknown) to the Changestable

12. If the Properties table contains (T, cl ass,act i on) then

(0]

If the Properties table contains arow (T, procedure,E)where E
isaPROforma expression then let V=Evauate(E,T) as defined
in 19.1, and add the row
(T, actual_procedure, V)

to the Changes table.

o0 Elseadd (T, actual_procedure, unknown) to the Changestable.

Definition of a Recommended Candidate:

A candidate identifier C identifies arecommended candidate of task T iff there exists
an expression E and a sequence of candidate identifiers aCy, ...,C,fisuch that:
0 The Properties table contains (T,candi dat es, &, ...,Cif) and
(C,r ecommendat i on, E) and
o Evduate(E,T)=t rue (seef9.l), and
0 Thereexistsan i such that (1£i£n) and C;=C

8.5.4. The Operation Discard(T)

Parameters:
T isatask identifier.

Definition:

=

Add (T,st at e, di scar ded) to the Changes table.
Perform the operation ActualiseGenericProperties(T,T).
3. (T,di scarded_ti nme, EngineTime) to the Changes table.

N

8.5.5. The Operation Complete(T)

Parameters:

T isatask identifier.

Definition:
1. Add(T,st at e,conpl et ed) to the Changes table.
2. (T,conpl et ed_ti nme, EngineTime) to the Changes table.
3. If there exists an <assertion> A such that the Properties table contains
(T, postcondition,A) then perform EnactAssertion(A,T), as defined in
18.5.11.
4. If CycleConditions(T) is true then perform SetStartAt(T)

5. If CycleConditions(T) is not true then add (T,st art _at ,unknown) to
the Changes table.

6. If the Properties Table containsarow (T,sour ces <S,,..,.S¢) then, for
each § such that the Properties table contains arows (S, dat a_i t em D)
and (D,r equest ed,true)and (D,def aul t _val ue,V):

If VI unknown then add therows (D,val ue, V) and
(D,r equest ed,f al se) to the Changestable.

7. If the Properties table contains (T,cl ass,deci si on) and
(T,confirmatoryfal se)then

a Let Cy,...,Cy bethe recommended candidates of T (see 18.5.3).

b. If the Propertiestable contains (T,choi ce_node,mul ti pl e)
then add the Row (T, resul t, &,...,Cf) tothe Changes Table.

c. Otherwiseadd (T, resul t, &;f) to the Changes Table where
C, istheidentifier of the recommended candidate with the highest
netsupport (if there is more than one candidate with this netsupport
value then pick the one with the highest priority). Netsupport is
calculated using the function EvaluateNetSupport defined in 19.4.

Note: the definition of Complete Conditions (18.6.4) ensures that a
decision that completes must have at |east one recommended
candidate.

8. If the Propertiestable contains (T,cl ass,deci si on) and aso contains a
row (T, candi dat es, <Ci ,..., C>) then for each C; (1EiEN) perform
the operation ActualiseCandidate(C;,T)

8.5.6. The Operation SetStartAt(T)

Parameters:
T isacomponent identifier identifying a task.
Description:
Sets the time at which a cycling task should restart.
Definition:
If there exists an expression E and atext string U such that the Properties table
contains (T,cycl e_i nterval ,E)and(T,cycl e_interval units,U)
then
a LetM=1000if U= “seconds’, 1000*60 if U= “minutes’,

1000*60*60 if U= “hours’, 1000* 60*60* 24 if U= “days’, and
1000* 60* 60* 24* 7 if U= “weeks’, and O otherwise.

35

b. LetV =Evauae(E,T)
c. add(T,start _at ,EngineTimet+V*M) to the Changes table.

Elseadd (T,st art _at , EngineTime) to the Changes table.

8.5.7. The Operation InitialiseCandidate(C)

Parameters:
C isacomponent identifier identifying a candidate of a decision.
Description:

Setstheact ual _capti onand actual _descri pti on of thecandidate and to
unknown. Doesthe same for theact ual _capti onsand
actual _descri pti onsofthe candidate’ s arguments.

Definition:
1. Perform InitialiseGenericProperties(C).

2. If the Properties Table containsarow (C, ar gunent s, <A; ,..., Ay>) then for
each A (1£i£N) perform the operation InitialiseGenericProperties(A)).

8.5.8. The Operation ActualiseCandidate(C,T)

Parameters:

C isacomponent identifier identifying a candidate of a decision.
T isatask identifier identifying the decision that owns C.

Description:
Setsvalues for the act ual _capti on and act ual _descri ption of the
candidate by evaluating itscapt i on and descri pti on. Doesthe samefor the
actual captionsand actual _descri pti onsof the candidate’ s arguments.
Definition:

1. Perform ActualiseGenericProperties(C).

2. If the Properties Table containsarow (C, ar gunent s, <A ,..., Ay>) then for
each A (1£i£N) perform the operation ActualiseGenericProperties(A)).

36

8.5.9. The Operation InitialiseGenericProperties(C)

Parameters:
C isacomponent identifier.
Description:

Setstheact ual _capti onand actual _descri pti on of thecomponent to
unknown.

Definition:
1. Add(C,act ual _capti on,unknown) to the Changestable

2. Add(C,actual _descri pti on,unknown) to the Changes table

8.5.10. The Operation ActualiseGenericProperties(C,T)

Parameters:

C isacomponent identifier.
T isatask identifier identifying the task that owns C.

Description:

Setsvalues for the act ual _capti on and act ual _descri ption of the
component by evaluating itscapt i on and descri pti on.

Definition:
1. If there exists an expression E; such that the Properties table contains the row
(T,capt i on, Ec) then let V.=Evaluate(E.,T) and add
(T,act ual _capti on,V) to the Changestable

2. If there exists an expression Eq such that the Properties table contains the row
(T.descri pti on, Ej) then let Vq=Evaluate(Eg,T) and add
(T,actual _descri ption, Vy) to the Changes table

8.5.11. The Operation EnactAssertion(A,T)

Parameters:

A isatext string whose syntax is defined by <assertion>

37

T isatask identifier identifying the task to which this assertion belongs
Definition:
1. If Aisof theform Name = E where Name is an <atom> and E isan
<expression> then
0 Let D = ResolveDataReference(Name) as defined in 9.5.
0 LeV = Evauate(E,T), as defined in 10.1.
0 Add (D, vaue, V) to the changes table.

2. Elseif Aisof theform A; “and” A, where A; and A, are <assertion>sthen
perform EnactAssertion(Aq,T) and then perform EnactAssertion(Ax, T).

8.5.12. The Operation InitialiseSource(S,T)

Parameters:
Sisacomponent identifier identifying a source.
Definition:

If there exists adata item identifier D such that the Properties table contains
therow (Sdat a_i t emD) but does not contain the row

(D,r equest ed,t r ue) then let R be the component identifier of the root plan
of the guideline:

o Addtherow (D,r equest ed,t r ue) to the Changes table.
0 Perform the Operation ActualiseGenericProperties(SR).

o Perform the Operation ActualiseGenericProperties(D,R).

o If there exists a sequence of expressions &, ... , Epfisuch that the
properties table contains (D,r ange_expr essi ons, &y, ... , Ei)

thenadd (D,r ange_val ues, avy, ..., Vi) to the changes table,
where V; = Evaluate(E;,R) for (1 £ i £ n) and where Ridentifies the
root plan of the guideline.

o If there exists an expression E such that the properties table contains

(D,def aul t _expressi on, E)thenadd (D,def aul t _val ue, V)
to the changes table, where V = Evaluate(E,R).

8.6. Task Conditions

The following conditions can be true or false for a given task identifier T.

38

8.6.1. InitialiseConditions(T)

Parameters:
T isatask identifier.
Description:
The InitialiseConditions of atask are trueif it is atriggered task which has just
completed or if the CycleConditions or InitialiseConditions of the task’s parent plan
aretrue.
Definition:
InitialiseConditions(T) is true iff either:

1. ThePropertiestable contains (T,st at e,conpl et ed) and
(T,trigger_activetrue)anddoesnot contain (T,t erm nal true),
or

2. Thereexists atask identifier P such that the Properties table contains

(T,par ent _pl an P) and Either StartConditions(P) or
InitialiseConditions(P) is true.

8.6.2. StartConditions(T)

Parameters:

T isatask identifier.
Description:
The StartConditions of atask are true iff, its parent plan (if any) isin_progress and
either; its ScheduledStartConditions, are true and it has no trigger; or it has been
triggered or has completed and needs to begin a new cycle.
Definition:

StartConditions(T) is true iff:

1. If there exists a component identifier P such that the Properties table contains
(T,par ent _pl an, P) then the Properties table also contains
(P,state,in_progress),and

2. One of the following conditions hold:

a. ScheduledStartConditions(T) is true and there does not exist astring S
such that the Properties table does contains (T,t r i gger ,S), or

39

40

b. The Propertiestable contains (T,t ri gger _acti ve,true)and
(T,st at e, dor mant), or
c. Thereexistsarea number R such that the properties table contains

(T,start _at,R and Rislessthan or equal to the current engine
time.

8.6.3. DiscardConditions(T)

Parameters:
T isatask identifier.
Description:
The DiscardConditions of atask aretrueiff either

1. Itisether dormant or in_progress and the DiscardConditions of its parent
plan are true, or

2. Itiscurrently dormant, its parent plan isin_progress, its ScheduleConditions
are true, and either it has antecedent tasks that have all been discarded, or it
has a precondition that is not true.

Definition:
Discard Conditions(T) istrueiff either of conditions 1, 2 or 3 below are true

1. There exists acomponent identifier P such that the Properties table contains
(T,parent _pl an, P)ad (P,state,i n_progress),and

a. The Properties Table contains either (T,st at e,i n_pr ogr ess), or
(T,st at e,dor mant), or both (T,st at e,conpl et ed) and
(T,start _at,R) for somerea number R, and eit her

I. DiscardConditions(P) is true, or

ii. TerminationConditions(P) is true.
Or;

2. Conditions a,b, and c below are true
a. Either:
I. There does not exists a component identifier P such that the

Properties table contains (T,par ent _pl an, P) or

ii. There exists acomponent identifier P such that the Properties
table contains (T,par ent _pl an, P) and
(P,state,i n_progress),
And

b. The Properties table contains (T,st at e, dor mant)

41

And

c. ScheduleConditions(T) is true and either:

i. There exists a non-empty sequence of task identifiers &r,..., Tl
such that the Properties table contains
(T,ant ecedent _t asks, &ly,...,Ty) and for dl i such that
1£iE£n the Properties table contains (Ti,st at e,di scar ded);
or

ii. Thereexistsan expression E such that the Properties table
contains (T,pr econdi ti on,E) and Evaluate(E,T)' t r ue.

Or;

3. The Properties Table contains (T,st at e,i n_pr ogr ess) and thereisan
expression E such that the Properties table contains
(T,abort condi ti on,E) and Evauate(E,T)=t r ue

8.6.4. CompleteConditions(T)

Parameters:
T isatask identifier.
Description:

The CompleteConditions of atask are true if it is currently in progress and has been
confirmed (if it is confirmatory), and has been supplied with values for al of its
mandatory sources (if it isadecision or enquiry) and if all of its mandatory
components or at least one of its terminal components has completed (if it is a plan)
and if none of its componentsisin_progress or could subsequently become
in_progress or be discarded (if it is aplan).

42

Definition:

CompleteConditions(T) is true iff the following conditions are all true:

1

2.

The Properties table contains (T,st at e,i n_pr ogr ess); and

If there exists a sequence of Source identifiers &, ...,S,i such that the
Properties table contains (T, sour ces, &,...,SA) then for al i such that
(1£iEnN):
o If there exists a Data Item identifier D such that the Properties table
contains (§,dat a_i t emD) and (S,mandat or y true) thenit
also contains (D,r equest ed,f al se);

and

If the Properties table contains (T,conf i r mat ory,t rue) thenitaso
contains (T,confi rnmed,true) ;and

If the Properties table contains (T,cl ass,deci si on) and

(T,confirmatoryfal se) thenT has at least one recommended candidate
((see 18.5.3); and

If the Properties table contains (T,cl ass pl an) then
b. For dl task identifiers C such that the Properties table contains
(C,parent _pl an,T):

I. The Propertiestable contains either (C,opti onal true)

(C,st at e,conpl et ed) or (C,st at e, di scar ded) , and

ii. The Properties table does not contain
(Csstate,in_progress),and

iii. StartConditions(C) isfase, and

iv. DiscardConditiong(C) is fase, and

v. InitialiseConditions(C) is false, and

vi. There does not exist area number R such that the Properties
table contains (C,st art _at ,R)

8.6.5. ScheduledStartConditions(T)

Parameters:

T isatask identifier.

Description:

The Scheduled StartConditions of atask are true iff it is currently dormant, it
ScheduleConditions are true, at least one of its antecedent tasks (if it has any) has
completed, and its precondition (if any) istrue.

43

Definition:

ScheduledStartConditions(T) is true iff the following three conditions are true:

1.

2.

The Properties table contains (T,st at e,dor mant); and
ScheduleConditions(T) is true and

If there exists a non empty sequence of task identifiers ar,..., Tofisuch that the
Properties table contains (T,ant ecedent _t asks, ar,...,Taf) then there
existsan i such that 1£i£n and the Properties table contains

(Ti,st at e,conpl et ed); and

If there exists an expression E such that the Properties table contains
(T,pr econdi ti on,E) then Evaluate(E,T)=t r ue.

8.6.6. ScheduleConditions(T)

Parameters:

T isatask identifier.

Description:

The ScheduleConditions of atask are true iff all of its antecedent tasks have either
completed or been discarded.

Definition:

The ScheduleConditions(T) is true iff the following conditions are true:

1.

If there exists a sequence of task identifiers &ly,..., Tniisuch that the Properties
table contains (T,ant ecedent _t asks, daly,...,T,f) then for al i such that
1£iEn:
a. the Properties table contains either (T;,st at e,conpl et ed) or
(Ti,st at e,di scar ded), and
b. There does not exist areal number R such that the Properties table
contains (T;,,start _at ,|R).

And

If there exists an expression E such that the properties table contains
(T, wai t _condi ti on,E) then Evaduate(E, T)=t r ue.

8.6.7. CycleConditions(T)

Parameters:

T isatask identifier.
Description:

The CycleConditions of atask are true iff either hasacycl e_unti | condition
which has not yet been satisfied or anbr _cycl es_val ue property whose valueis
greater than that of itscur rent _cycl e property.

Definition:
CycleConditions(T) is true iff
1. Thereexist integers I,C such that the Properties table contains
(T,current _cycle ,l)and(T,nbr _cycl es_val ue,N)andN > C; and

2. If there exists an expression E such that the Properties table contains
(T,cycl e_unti |l ,E) thenEvaluate(E, T)'t r ue.

8.6.8. TerminationConditions(T)

Parameters:
T isatask identifier that identifies a Plan.
Description:
The TerminationConditions of a plan are true if either it's
term nati on_condi ti on exists and evauatestrue or if it has atermina task
which has completed.
Definition:
TerminationConditions(T) istrueif either

1. Thereisan expression E such that the Properties Table contains
(T,term nati on_condi ti on,E) and Evaluate(E,T)=t r ue, or

2. There exists atask identifier T2 such that the Properties Table contains
(T2,parent _pl an,T) and (T2,st at e,conpl et ed).

9. Evaluation of Expressions

In the PROforma language all expressions are “attached” to atask. If they appear in
the preconditions, postconditions, or parameter value definitions or candidate
definitions of atask then they are “attached” to that task. Expressions appearing in the

45

definition of data items are “attached” to the root plan. Hence the function Evaluate,
which returns the value of an expression, takes two parameters specifying the
expression and the task to which it is attached.

9.1. The Function Evaluate(E,T)

Parameters:

E isatext string with the syntax <expression>
T is a component identifier identifying the task within which the expression E
occurs.

Value: Evaluate(E,T) evauates to a PROforma value.

Definition:

46

If E isan <atom> then:
0 If thereisacomponent identifier D such that
D=ResolveDataReference(E,T) then
Evaluate(E, T)=Eva uateDataReference(D,T) as defined in 10.2.

0 Otherwise Evaluate(E,T) = the text string E with any enclosing single
quotes removed.

If E is a<number> then Evaluate(E, T) = the numeric value of E, i.e. the value
you get by converting the text string E to an integer or floating point number
using the usual conventions.

If E isa<double quoted_string> then Evaluate(E, T) = the text string E with
the enclosing double quotes removed.

If Eisof theform“(” E1 “)” where E; is an <expression> then
Evauate(E,T) = Evaluate(E,, T).

If E isof the form “result_of” “(” A *)” where A is an <atom> then
0 If Ta=ResolveTaskReference(A,T), as defined in 9.6, and there exists
a candidate identifier C such that the Properties table contains the
rows (Ta,result,C) and (C,name,V) then Evaluate(E,T)=V.
0 ElseEvauate(E, T)=unknown.

Elseif E is of the form “netsupport” “(” A1 “,” A2 “)” where A; and A, are
<atom>s then Evaluate(E, T)=EvaluateNetSupport(T1,C), as defined in 19.4
where T;=ResolveTaskReference(A1,T), asdefined in 9.6, and
C=ResolveCandidateReference(A, T1), as defined in 19.8.

If E isof theform E; Op Ez where E; and E; are <expression>s and Op isan
<infix_op> then Evauate(E,T)=Fop(V1, V2) whereV; = Evaluate(E; ,T) for
(1£i£n) and Fop is the evaluation function for Op, as defined in 11.

If Eisof theform Op “("E1“,” ... “,” En)" where Op is a <functor_name>
and E; is an <expression> (for each i such that 1 £i£n) then

Evaluate(E, T)=Fop(T,V1,..., Vn) whereV; = Evaluate(E; ,T) and Fqp isthe
evaluation function for Op, as defined in Y11.

If E isa<set_enumeration> of the form “[“ E1 “,” ... “,” E, “]” whereEjisan
<expression> (for eachi suchthat 1 £i£n) then Evaluate(E,T) = the
sequence <Evauate(E;,T), ... , Evaluate(En, T)>.

9.2. The Function EvaluateDataReference(D,T)

Parameters:

D isacomponent identifier that identifies a parameter or data item referred to
in some expression.

T isacomponent identifier identifying the task to which the expression that
refersto D belongs.

Value: EvaluateDataReference(D,T) evaluates to a PROforma vaue.

Definition:

1.

If the Properties table contains the row (D, class, par anmet er) then
EvaluateDataReference(D, T) = EvaluateParameter(D, T) as defined in 19.3.

Elseif there exists a value V such that the Properties table contains the rows
(D,class,dat a_i t em) and (D,value,V) then EvaluateDataReference(D, T)=V.

Else EvaluateDataReference(D, T)=unknown.

9.3. The Function EvaluateParameter(D,T)

Parameters:

D isacomponent identifier that identifies a parameter that is referred to in
some expression.

T isacomponent identifier identifying the task to which the expression that
refers to D belongs.

Value: EvaluateParameter(D,T) evaluates to a PROforma value.

Description:

EvauateParameter is used to evaluate the value of atask’s parameter. There are a
couple of subtleties to bear in mind when considering parameter evaluation. The first

47

is that the values of atask’s parameters get fixed when the task becomes

i n_progress butthatitisuseful to be able to refer to them in the task’s
preconditions, which are evaluated while the task is still dor mant . The semantics
given here mean that if a parameter is encountered during the evaluation of a
precondition then it will be given the value that it would have if the task became

i n_progress a that moment. The second subtlety is that the expression that
defines the parameters value is part of the specification of the task’s parent plan, and
consequently is evaluated within the scope of that parent plan.

Definition:

1. If there exists a component identifier P and an expression E such that the
Properties table contains the rows (T,parent_plan,P), (D,expression,E) and
(T,state,dor mant) then EvauateDataReference(D,T) = Evauate(E,P).

2. Elseif there exists avalue V such that the Properties table contains the rows
(D,value,V) and (T,state,i n_pr ogr ess) then
EvauateDataReference(D, T)=V.

3. Else EvaluateDataReference(D,T)=unknown.

48

9.4. The Function EvaluateNetSupport(T,C)

Parameters:

T isatask identifier
C is a component identifier identifying a candidate

Value: EvaluateNetSupport(T,C) evauates to an integer or to the constant
unknown.

Definition:

If there exists a sequence 8Al, ..., Aniisuch that the Properties table contains a

row (C,ar gunent s, 81, ..., Anf) thenfor all i such that(1£i£n) let E; be the
unique expression such that the Properties table contains the row
(Ai,expressi on,E), let § be the unique value such that the Properties table
containstherow (Aj,support ,S) and let Vi=Evaluate(E;,C), then:

o |Ifthereexisti,j such that Vi=V,=t r ue and S=confi r m ng and
S=excl udi ng then EvaluateNetSupport(T,C)=unknown.

0 Elseif thereexistsi suchthat Vi=t r ue and S=conf i r m ng then
EvauateNetSupport(T,C)=9999.

0 Elseif thereexistsi suchthat Vi=t r ue and S=excl udi ng then
EvaluateNetSupport(T,C)=-9999.

0 Else EvaluateNetSupport(T,C)=W; + ... + W, where for al i such
that(1£i£n):

» IfVi=true andS=for then W, =1.

» IfVi=true and S=agai nst then W =-1.
» |fVi=true and S isaninteger then W = S.
= |fVit truethen W =0.

Else EvaluateNetSupport(T,C)=unknown.

9.5. The Function ResolveDataReference(A,T)

Parameters:

A is an <atom>
Tisatask identifier

49

Value: ResolveDataReference(A,T) evaluates to either the constant unknown or to a
component identifier, which identifies a parameter or data item.

Definition:

1. If the propertiestable containsrows (T, par anet er s, <P1, ..., Py>) and
thereisan A¢such A¢ and A are equal if caseisignored and a P; such that
1£i£n and and such that the Properties table contains (Pi,name, A¢) then
ResolveDataReference(A,T) = P;.

2. Elseif thereisan A¢such A¢ and A areequd if caseisignored and a
comporent identifier D such that the Properties table contains the rows (D,

class,dat a_i t em) and (D, name, A¢) then ResolveDataReference(A,T) = D.

3. Else ResolveDataReference(A,T) = unknown.

9.6. The Function ResolveTaskReference(A,T)

Parameters:

A is an <atom> or text string.
Tisatask identifier

Value: ResolveTaskReference(A, T) evaluates to either the constant unknown, or to a
component identifier, which identifies a task.

Description:

The function ResolveTaskReference is used to determine whether a given atom A
appearing in the description of atask T should be treated as a reference to some other
task, and if so which task. The rule used is that if there is only one task named A then
A istaken to refer to that task, other wise if there is only one task named A that
belongs to the same plan as T then A refers to that task, otherwise A does not refer to a
task at all.

Definition:
1. If thereexistsan A¢such A¢ and A are equal if caseisignored and a unique
task identifier Ca such that the Properties table contains the row (Ca, name, A
then ResolveTaskReference(A,T) = Ca.

2. Elseif there exist an A¢such A¢and A are equal if caseisignored and unique
task identifiers P and Ca such that:

a. The Properties table contains the rows (P, parent_plan, T) and
(Ca,name, AQ, and

50

b. IsAncestor(P, Cp) istrue (see 10.7)

Then ResolveTaskReference(A, T) = Ca.

3. Else ResolveTaskReference(A,T) =unknown.

9.7. The Condition IsAncestor(T, T,)

Parameters:
T, and T, are task identifiers.
Description:

This condition is true iff Ty identifies a plan and T, identifies a component task of T,
or acomponent task of a component task of T; and so on recursively.

Definition:

1. If the Properties table contains the row (T, ,parent_plan, T;) then
IsAncestor(Ty, T>) istrue.

2. Elseif there exists atask identifier T3 such that IsAncestor(Ty, Ts) istrue and
the Properties table contains the row (T, ,parent_plan, Ts3) then
IsAncestor(Ty,T2) istrue.

3. ElselsAncestor(Ty,T2) isfalse.

9.8. ResolveCandidateReference(A,T)

Parameters:

A is an <atom>
Tisatask identifier

Value: ResolveDataReference(A,T) evaluates to either the constant unknown or to a
component identifier, which identifies a candidate.
Definition:

If the properties table contains arows (T, candidates, <Cy, ... , C;>) and there
isan A¢such A¢and A are equal if case isignored and a C; such that the
Properties table contains (C;,Name, A{) then
ResolveCandidateReference(A,T)= Ci.

51

Else ResolveCandidateReference(A, T) = unknown.

10. Properties of Components

We list here the properties that each class of component may have, along with the
allowed values for that property and its intended meaning. The semantics of
PROforma are such that a property never gets assigned a value that is not allowed.
Consequently there is no need for the EnactChanges operation (18.4) to check that
property values specified in the Changes table are actually allowed. The constant
unknown isan allowed value of all properties.

10.1. Properties Generic To All Components

Property Name Allowed Values Intended M eaning
(besides unknown)
Cl ass data_itempl an, What sort of component it is.
deci si on,
enqui ry,acti on,
sour ce,
candi dat e,
par amet er , or
war ni ng_fl ag
Nane Any text string A name for the comporent
caption Any PROforma Expression that can be used to

expression of type
text.

generate the component’s
caption.

actual _caption

Any text string.

Actua caption of the
component, generated by
evaluating thecapti on a
the appropriate time.

descri ption

Any PROforma
expression of type
text.

An expression that can be
used to generate a longer
description of the component

actual _description

Any text string.

Actual description of the
component, generated by
evaluating the

descri ption athe
appropriate time.

52

10.2. Properties Generic To All Tasks

Tasks may have al the generic component properties listed in §10.1 and in addition
may have the following properties.

Property Name Allowed Values Intended M eaning
(besides
unknown)

state Oneof dor mant , | The state of the task.
di scar ded,
i n_progress,or
conpl et ed.

ant ecedent _t asks A sequence of task | The tasks that must be
identifiers. completed or discarded

before this one starts.

goal Any Truth Vaued What the task is intended to
PROforma do.
expression.

precondition Any Truth Valued | A condition that may be
PROforma assumed to be true when the
expression. task starts.

wai t _condition Any Truth Valued | A condition that must be true
PROforma before the task can start or be
expression. discarded.

trigger A text string The task’ s trigger.

conforming to the
syntax of <trigger>
aslaid out in the
PROforma BNF.

trigger_active

trueorfal se

Whether or not the task’s
trigger is active.

post condi tion A PROforma A condition that may be
assertion assumed to be true when the
task compl etes.
par aneters A sequence of Thetask’ s parameters.
Component

|dentifiers each of
which identifies one
of thetask’s
parameters.

parent _pl an

A Task Identifier

Thetask’ s parent plan. For
the root plan this property has
the value unknown.

confirmtory

true orfal se

Whether or not the task needs
to be confirmed.

confirned

true orfal se

Whether or not the task has
been confirmed.

53

current _cycle

Any positive integer

The current cycle number.

nbr _cycl es_val ue

Any positive integer

The number of times this task
should be performed once
started.

nbr _cycl es_expressi on

Any integer valued

Expression used to calculate

PROforma thenbr _cycl es_val ue
expression. property. Should evaluate to
anumber 3 1.
cycle_until Any truth valued Task should be repetitively
PROforma performed until this condition
expression. istrue.
cycle_interval Any red valued Amount of timein to wait
PROforma between cycles of thistask.
expression See aso
cycle interval _units
cycle_interval _units | Eitherseconds, Units in which the cycle

m nut es, hour s,
days, or weeks.

interval is expressed.

start _at

Any floating point
number.

Task will wait until Engine
Time exceeds or equals this
value and then start the task
(used in cycling).

opti onal

true orfal se

If t r ue thistask must
complete or be discarded
before its parent plan
completes (unless atermina
task completes).

term nal

true orfal se

If t r ue then if thistask
completes then its parent plan
also compl etes.

[wt h

A sequence of four
integers.

Cartesian coordinates of a
point at which to display an
icon representing thistask in
aGUI.

cont ext

Any text string

Any additional information
that may need to be provided
when an action’s actual
procedure is performed, e.g.
who is supposed to perform it
and where,

in_progress_tine

Any floating point
number.

The engine time at which the
task last entered the

i n_progress date.
unknown if the task has not
yet entered that state.

di scarded_tine

Any floating point
number.

The engine time at which the
task last entered the
di scar ded date.
unknown if the task has not

yet entered that state.

conpleted_tine

Any floating point
number.

The engine time at which the
task last entered the

conpl et ed date.

unknown if the task has not
yet entered that state.

10.3.

Properties Of Plans

A plan may have all the generic properties of tasks (110.2) in addition to the following

properties.

Property Name

Allowed Values
(besides
unknown)

Intended M eaning

term nate_condition

Any truth valued
PROforma
expression.

A condition that, if true, will
cause the plan to terminate.

abort _condition

Any truth valued
PROforma
expression.

A condition that, if true, will
cause the plan to be aborted.

10.4.

Properties Of Decisions

A decison may have al the generic properties of tasks (110.2) in addition to the
following properties.

Property Name

Allowed Values

Intended Meaning

(besidesunknown)
candi dat es A sequence of The decision’s candidates.
Candidate Identifiers
sour ces A sequence of Source | The decision’s sources.
|dentifiers
support_node | synbol i c or Whether arguments are to be weighed
nuneric up numerically or symbolically. Note

that the definition of net support given
in 19.4 attaches numeric values to
symbolic weights such as f or and
agai nst thusthe distinction between
numeric and symbolic weighting does
not effect the semantics given in this
document.

choi ce_node

mul tipleor
singl e

Whether many candidates may be
chosen or only one.

result

A sequence of

The chosen candidate(s).

55

candidate identifiers. If
thechoi ce_node is
si ngl e thenthis
sequence contains only
one identifier.

10.5. Properties Of Actions

An action may have all the generic properties of tasks (110.2) in addition to the

following properties.

Property Name Allowed Values Intended M eaning
(besidesunknown)
procedure Any PROforma Statically defined procedure to be
expression of type requested by the task.
text.
actual _procedure | Any text string Procedure that the task is actually
requesting.

10.6. Properties Of Enquiries

An enquiry may have all the generic properties of tasks (110.2) in addition to the

following properties.

Property Name Allowed Values Intended Meaning
(besidesunknown)
sour ces A sequence of source | The enquiry’s sources.
identifiers.

56

10.7.

Properties Of Data Items

Data items may have all the generic component properties listed in 110.1 and in
addition may have the following properties.

Property Name

Allowed Values

Intended M eaning

(besides unknown)
type Oneof t ext , The type of the data item
i nt eger,
bool ean,
dat eti me,dat e,
tinme,real,
set of _text,
set of i nteger,
set of _real
val ue Any PROforma value | The vaue that has been
assigned to this data item.
range_val ues Any sequence of text | Allowed values for the data
strings or numbers. item.
range_expressi ons Any sequence of Expressions that are used to
PROforma calculate the
EXpressions. range_val ues property.

def aul t _val ue

Any text string or
number

A default value to be
suggested when requesting a
value for this data item.

mandat ory_val i dati on | Any truth valued A condition that must be true
PROforma at the moment that a new
expression. value is supplied for this data

item.

war ni ng_condi ti ons A sequence of Warning conditions for this
warning condition data item.
identifiers.

derivation_rule Any PROforma An expression used to
expression. calculate the value of this

dataitem at the moment it
becomes requested.

uni t Any text string The units in which this data
item’s value is expressed.
request ed Eithert rue or Whether or not a new value
fal se. has been requested for the
data item.
10.8. Properties Of Candidates

57

Candidates may have all the generic component properties listed in §10.1 and in
addition may have the following properties.

Property Name Allowed Values Intended M eaning

(besidesunknown)

recommendat i on | Any PROforma Condition that must be true in order
expression for this candidate to be

“recommended”

priority Any integer Priority of this candidate

argunent s Any sequence of Arguments associated with this
argument identifiers. candidate.

10.9. Properties Of Arguments

Arguments may have all the generic component properties listed in §10.1 and in
addition may have the following properties.

Property Name

Allowed Values
(besidesunknown)

Intended M eaning

support

Either confi rm ng,
excl udi ng, f or
agai nst ,oran
integer or real number.

The support that this argument, if true,
will add to its candidate.

expr essi on

Any PROforma
expression

An expression defining this argument.

10.10. Properties Of Parameters

Parameters may have all the generic component properties listed in 910.1 and in
addition may have the following properties.

Property Name

Allowed Values

Intended Meaning

(besidesunknown)
val ue Any PROforma vaue | The value that has been assigned to
this parameter.
expr essi on Any PROforma An expression that will be evaluated
expression in order to assign avaueto this

parameter.

10.11.

Properties Of Sources

Sources may have all the generic component properties listed in 10.1 and in addition
may have the following properties.

58

Property Name Allowed Values Intended Meaning
(besidesunknown)
data_item A dataitem identifier | Data Item for which avaue isto be
provided.
nmandat ory true orfal se. Whether or not avalue must be
supplied.

10.12. Properties Of Warning Conditions

Warning conditions may have all the generic component properties listed in 10.1 and
in addition may have the following properties.

Property Name Allowed Values Intended Meaning
(besidesunknown)
expressi on Any PROforma The condition we want to be warned
expression about.

acti vated trueorfal se. Whether or not theexpr essi on
evaluated to true when a value was
last added to the warning condition’s
data item.

11. PROforma Built-in Operators

This section lists the functors and infix operators that may occur in a PROforma

<expression> along with their types and evaluation functions, which are used by the

function Evaluate (109.1) to evaluate the applications of these functions and operators.
11.1. Infix Operators

11.1.1. ArlthmetIC OperatOFS 1] +n, u_n’“*n

We give here the allowed types and evaluation rule for “+”. The types for “-” **” are
the same as that for “+”. The evaluation rules for “-”,“*”, “/” are identical to that for
“+” except that in the definition of F. the arithmetic operator + is replaced by — and so
on. Note that “-” is aso the name of the unary minus operator (111.2.2).

Typesfor “+”:

(integer”integer) ®integer
(real “real)®r eal

59

Note that this typing allows an arithmetic operator to be applied to arguments whose
typesarer eal “i nt eger ori nteger real becausewe can promote the integer
argument to real.

Definition of the evaluation function F.(T,V1, V2)

If Viand V- are both integers or reasthen F.(V1, V2)=V1 +V,
Elseif either Vi =unknown or V, =unknown then F.(V1, V>) =unknown

11.1.2. Arithmetic Operator “/”

The only difference between the definition of “/” and that for “+”, “-”, and “*” is that
the result of adivision is dways treated as rea even if its arguments are integers.

Typesfor “/”:
(real ‘real)®real

Note that type promotion means that “/” is still typeable if one or both of its
arguments are integers.

Definition of the evaluation function F(T,V1, V2)

If Viand V- are both integers or reals then F(V1, V2)=V1/ V>
Elseif either Vi =unknown or V, =unknown then F.(V1, V2) =unknown

11.1.3. Comparison Operators “>", “<” “>="4=>" *“<="
13 :<H 13 :H 3 !:H 13 <>Il

) 1 H

We give here the allowed types and evaluation rule for “>”, “<” “>="=>" “<="
IS U

Note that al these operatorsreturn f al se if one or both comparands has the value
unknown. This means that one cannot necessarily assume that not(a=b) is equivalent
to(a'!'=b).

Typ%for 13 >”1 13 <” 1“ >:H“ :>H1 13 <:”’ 13 :<”1 13 :H1 H!:H, 13 <>ll.
(real ‘real)®truth_val ue
(text ‘text)®truth_val ue

(setof _real” setof _real)®truth_val ue
(setof text setof text)®truth val ue

60

Definition of the evaluation function for “>"*<”, “<=" *=>" “>=" “=>" *="
[<>” and] ! :11

The evauation function for these operators is defined in terms of a function comp,
head, and tail which we define below. Note that comp, head, and tail are not
PROforma built-in operators, we have smply introduced it in order to define the
comparison operator.

For a non-empty sequence of values V :
head(V) is the first element in the sequence
tail (V) isthe rest of the sequence (an empty sequence if the V contains only
one element).

Examples:

head(4L ,2,37) = 1
tail (4L ,2,37) = 2,3
head(a“a’) = “a’
tail(@“a f) = &

The function comp returns 1,-1,0,or unknown and is defined as follows:
If V1 =unknown or Vi =unknown then comp (V1, V2) = unknown.

Elseif V,and V- are both integers or reals then
o IfVi>V, comp (Vl, Vz): 1
0 Elseif Vi <V, comp (V1, Vo)=-1
0 Elseif V1=V, comp (V1, V2)=0

Elseif Vi and V; are both text strings then
o If Vi islexicographicaly greater than V. ignoring considerations of
case then comp (V1, V2)=1
0 Elseif V; islexicographically less than V. ignoring considerations of
case then comp (V1, V2)=-1
o Elseif V; islexicographically equal to V, ignoring considerations of
case then comp (V1, V2)=0

Elseif V1 and V» are nonempty sequences of values then
o If comp (head(V1),head(V2))=1then comp (V1, V2)=1

0 Elseif comp (head(V1),head(V2))= -1 then comp (V1, V2)=-1
o Elsecomp (V1, V2)=comp (tail(V1),tail(V2))

Elseif V, and V» are both empty sequencesthen comp (V1, V2)=0

Elseif V; isan empty sequence then comp(Vy, V) =-1
Elseif V. isan empty sequence then comp(Vy, Vo) = +1

61

The evauation functions for all comparison operators are defined in terms of comp as
follows:

comp (V1, V2) 1 -1 0 unknown
F-(V1, V2) true fal se fal se fal se
F<(V1, V2) fal se true fal se fal se
F--(V1, V2) true fal se true fal se
F<-(V1, V2) fal se true true fal se
F=(V1, V2) fal se fal se true fal se
Fi-(V1, V>) true true fal se fal se

Wetreat “>=" and “=>" as synonyms, similarly “<=" is synonymous with “=<" and
13 <>H Wlth 13 !:H .

”

11.1.4. Boolean Operators “and”, “or

We give here the allowed types and evaluation functions for “and” and “or”.
Typesfor “and”:

(truth_value truth_value)®truth_val ue
Definition of the evaluation function Fang(T, Vi1, V2)

If V1=t rue and Vo=t r ue then Fang(V1, V2)=true
Else Fang(V1, V2)=1 al se.

Typesfor “or”:
(truth_value’truth_value)®truth_val ue
Definition of the evaluation function Fy (V1, V2)

If either V1 =t r ue or Vo=t r ue then Fo(V1, Vo)=t r ue
Else For(V1, Vo)=f al se.

11.1.5. Text Concatenation Operator “#”

Typesfor “#":

62

(text "text)®text
(real "text)®t ext
(text 'real)®text
(real ‘real)®t ext

Definition of the evaluation function F(T, V1, V2)
If V11 unknown and V> unknown then F«(V1, V2)=the concatenation of the
textual representations of V1 and V2. The text representation of atext itemis
the item itself, the text representation of an integer or real isimplementation
dependent. As example Fx(“he”, “110")= “hello” and Fx(“pi is”,*3.14159")

might be “pi is 3.14159" depending on how the implementation represents real
numbers as text.

Else F«(V1, V2)= unknown.

11.1.6. Membership Operators “includes”, “include”,
“oneof”

We give here the allowed types and evaluation function for “includes’. The operator
“include” is a synonym for “includes’. The operator “oneof” isidentical to “includes’
except that the order its operandsis reversed, i.e. E;“oneof’E; © Ex*includes’E;

Typesfor “includes’:

(setof text text)®truth_val ue
(setof _real "real)®truth_val ue

Definition of the evaluation function Fngudes(T, V1, V2)
The definition uses the function comp introduced in 111.1.3 and is as follows:

If V1 isasequence of valuesdVi 1, ..., Vipfiand if there exists aj such that
(1£j£n) and comp(V1, ,V2) = 0 then Fingudes(V1, V2)=t r ue.

11.2. Prefix Functors

11.2.1. Conditional Operator “if”

We give here the allowed types and evaluation functions for “if”.

63

Typesfor “if”:

(truth_value truth _value truth_value)®truth_val ue
(truth_val ue’integer’integer)®i nteger
(truth_value'real "real)®real

(truth_value'text text)®text

(truth_val ue”setof i nteger” setof integer)
® set of _i nt eger

(truth_value” setof real "setof real)® setof real
(truth_value” setof text setof text)®setof text

Definition of the evaluation function F¢(T, V1, V2, V3)

If Vi=true then Fif(Vj_, V5, V3) =V,
Else |fV1 =f al se then Fif(V]_, V5o, Vs) =V;
Else F¢(V1, V2, V3) = unknown

11.2.2. Unary Minus Operator “-”

We give here the allowed types and evaluation rule for the unary minus operator “-”.
Typesfor “-" (unary minus):

(integer) ®i nt eger
(real) ®real

Definition of the evaluation function F(T, V1) for unary minus.

If V1 isaninteger or rea then F.(V1)=-V1
Elseif either Vi =unknown then F.(V1) =unknown

11.2.3. The functor “isknown”

Typesfor “isknown”:

text®truth_val ue

real ®truth_val ue

setof text®truth_val ue
setof _real ®truth_val ue
truth_value®truth_val ue

Definition of the evaluation function Fsqmown (T, V)

If V=unknown then Fsnown(V)=t r ue.

11.2.4. Boolean Operator “not”

We give here the alowed types and evaluation functions for “not”
Typesfor “not”:

truth_val ue®truth_val ue
Definition of the evaluation function Fyet(T, V)

If V=f al se then F(V)=t r ue

11.2.5. Operator “count”

Typesfor “count”:

set of real ®i nteger
setof _text®i nteger

Definition of the evaluation function Feount (T, V)

If V =isanonempty sequence of values &/;. ..., Viii then Feoun(V)=n
Elseif V= isan empty sequence then Feount(V)=0
Else Feount (V)= unknown

11.2.6. Operator “sum”
Typesfor “sum”:

set of i nteger®i nteger
set of real ®real

Definition of the evaluation function Fgm(T, V)

If V= isanonempty sequence of values &/1, ..., Vxfi and each valueV,
(1£i€En) isarea number or integer then Fom(V)= Vi+...+V,

65

Elseif V= isan empty sequence then Fgm(V)=0

Else Fam(V)=unknown

11.2.7. Operator “max”
Typesfor “max”:

setof i nteger®i nteger
set of real ®real
set of _text®t ext

Definition of the evaluation function Fnax(T, V)
Fmax(T, V) is defined using the comp function introduced in Y11.1.3.

If V= isanonempty sequence of values &/1, ..., Vyfi andthere existsan
integer i such that all of the following conditions are true:

o 1fi£n
o Vi tunknown
o Foralljsuchthat 1£ j £n: comp(V;, V;)3 0 or comp(V;, Vj)=unknown

Else Fnax(T, V)= unknown.

11.2.8. Operator “min”
Typesfor “min”:

setof i nteger®i nteger
set of real ®real
set of _text®t ext

Definition of the evaluation function Fmin(T, V)
Fmin(T, V) is defined using the comp function introduced in 111.1.3.

If V= isanonempty sequence of values &/1, ... , Vxfi andthere existsan
integer i such that all of the following conditions are true:

o 1fié£n
o Vi tunknown

66

o Foralljsuchthat 1£ j £n: comp(V;, V;)£0 or comp(V;, Vj)=unknown

then Fmin(T, \/): Vi.

Else Fmin(T, V)= unknown

11.2.9. Operator “nth”
Typesfor “sum”:

i nt eger ® set of _i nt eger ®i nt eger
i nteger ® set of _real ®r eal
i nt eger ® set of _text ®text

Definition of the evaluation function Ry (T, V1,V2)

If V2 isasequence of valuesdV, 1, ..., Vo i and Vy is aninteger i such that
1£ i £nthen Fn(T, Vi,V2) = Vs, i

Else Frin(T, V1,V2) =unknown.

11.2.10. Operators “is_dormant”, “is_in_progress”,
“is_discarded” and “is_completed”.

We give here the type and evaluation rule for is_dormant. The types for

is in_progress, is_discarded, is_completed are the same and their evaluation rules are
identical except that the word “dormant” should respectively replaced by
“in_progress’, “discarded” and “completed”.

Typesfor “is_dormant”
text®truth_val ue
Definition of the evaluation function Fs dormant(T, V)

Let C=ResolveTaskReference(V,T).
If C=unknown then Fs dormant(T, V) = unknown.

Otherwise Fis gormant(T, V) =t r ue if the properties table contains
(C,st at e, dor mant) and Fis gormant(T, V) = f al se otherwise.

67

11.2.11. Operators “in_progress_time”, “discarded_time”
and “completed_time”.

We give here the type and evaluation rule for in_progress time. The types for
discarded _time, and completed time are the same and their evaluation rules are
identical except that the word “dormant” should respectively replaced by
“in_progress’, “discarded” and “completed”.
Typesfor “in_progress time”

text ®r eal

Definition of the evaluation function Fin progress time(T, V)

Let C=ResolveTaskReference(V,T).

If there exists areal number N such that the properties table contains
(C,i n_progress_tinmeN) then Fin progress time(T, V)=N otherwise
Fin progress i me(T, V)=unknown.

11.2.12. Operator “union”

Typesfor “union”:
set of _anyt hi ng® set of _anyt hi ng®set of _anyt hi ng
setof integer®setof integer®setof integer

setof real ®setof _real ®set of _real
set of text®setof text®setof text

Definition of the evaluation function Fynion(T, V1,V2)

If V1 isasequence of valuesaVy 1, ..., Vii and V. isasequence of values
é\/z,l, ,V2,nﬁ then Funion(T, V1,V2) = é_V1,1, ceey Vin, Vo1, ..., Vz,nﬁ.

Else Funion(T, V1,V2) = unknown.

11.2.13. Operator “diff”
Typesfor “diff”:

set of _anyt hi ng® set of _anyt hi ng®set of _anyt hi ng
setof i nteger®setof i nteger®setof _integer
setof _real ®setof real ®setof real

set of text®setof text®setof text

Definition of the evaluation function Fyit(T, V1,V2)

68

If V1 isasequence of valuesaVi i, ..., Vil and V, isasequence of values
Mg, ..., Vot then Fgit(T, V1,V2) = theresult of taking V1 and removing all
values V1, where Vy; ' unknown and there existsj such that Vi = V,;.

Else Fgitt(T, V1,V2) = unknown.

11.2.14. Operator “intersect”

Typesfor “intersect”:

set of _anyt hi ng® set of _anyt hi ng®set of _anyt hi ng
setof i nteger®setof i nteger®setof _integer
setof _real ®setof real ®setof real

set of text®setof text®setof text

Definition of the evaluation function Fntersect (T, V1,V2)
If V1 isasequence of valuesaVy g, ..., Vii and V. isasequence of values
o1, ..., Vo then Finersect (T, V1,V2) = the result of taking V1 and removing
all values V1 ; where either V1 ; = unknown or there does not exist j such that
Vl,i = V2,j-

Else Fintersect (T, V1,V2) = unknown.

11.2.15. Operator “abs”
Typesfor “abs’:

i nt eger ®i nt eger
real ®real

Definition of the evaluation function Fas(T, V)

If V isan integer or real number then Fas(T, V)=the absolute value of V.

Else Fas(T, V)==unknown.

11.2.16. Operator “exp”

Typesfor “exp”:
real ®real

Definition of the evaluation function Fexp(T, V)

69

If V isan integer or real number then Fexp(T, V)= e”.

Else Fexp(T, V)==unknown.

11.2.17. Operator “In”

Typesfor “In”:
real ®real
Definition of the evaluation function Rn(T, V)

If Visan integer or real number and V>0 then Fr(T, V)= the natural logarithm
of V.

Elseif Visaninteger or real number and VEO then Fr(T, V) is undefined and
an attempt to evaluate it will set the Exception flagtot r ue.

Else Fin(T, V)==unknown.

11.2.18. Operator “sin”
Typesfor “sin”:
real ®real

Definition of the evaluation function Fg, (T, V)

If Visan integer or real number and then Fg,(T, V)= the trigorometric sine of
V (i.e. weassumeV is expressed in radians).

Else Fgn(T, V)= unknown.

11.2.19. Operator “cos”
Typesfor “cos’:

real ®real
Definition of the evaluation function Feos(T, V)

If Visan integer or real number and then FcoT, V)= the trigonometric cosine
of V (i.e. we assume V is expressed in radians).

70

Else Feof T, V)= unknown.

11.2.20. Operator “tan”
Typesfor “tan”:
real ®real
Definition of the evaluation function Ran(T, V)
If V= unknown t hen Rax(T, V)=unknown.
Elseif FeolT, V)L 0 then Fian(T, V)= Fsn(T, V)/ FeofT, V).

Else Fian(T, V) is undefined and an attempt to evaluate it will set the Exception
flagtot rue.

11.2.21. Operator “asin”
Typesfor “asin”:
real ®real
Definition of the evaluation function Fagn(T, V)
If V= unknown t hen Fgun(T, V)=unknown.
Else there exists a number X such that Fgn(T, X)! V then Fan(T, V)= X.

Else Fain(T, V) is undefined and an attempt to evaluate it will set the Exception
flagtot rue.

11.2.22. Operator “acos”

Typesfor “acos’:
real ®real
Definition of the evaluation function Facos(T, V)
If V= unknown t hen FuodT, V)=unknown.

Else there exists a number X such that Feof(T, X)t V then Facof T, V)= X.

71

Else FacofT, V) is undefined and an attempt to evaluate it will set the
Exception flagtot r ue.

11.2.23. Operator “atan”

Typesfor “atan”:

real ®real

Definition of the evaluation function Fsan(T, V)

If V= unknown t hen Faxn(T, V)=unknown.

Else there exists a number X such that Fian(T, X)t V then Faan(T, V)= X.

Else Faan(T, V) is undefined and an attempt to evaluate it will set the Exception
flagtotrue.

11.2.24. Operator “random”

Typesfor “random”:

r eal

Definition of the evaluation function K andom(T)

Frandom(T, V)= RandomNum.

12. Loading Guidelines

The state of the guideline isinitialised by the LoadGuideline operation, whose
parameter isatext string G conforming to the syntax of <guideline> in the PROforma
BNF. The Proforma BNF defines a <guideline> by

<guideline> = [<directives>] <plan> { <task>|<data_item>}

So the guideline G is of the form Dir RootDef; ... Defy, where:

72

Dir isthe directives block of the guideline, whose syntax is defined by
<directives>,

Root is the root plan, whose syntax is defined by <plan>, and

Def; ... Defy, are definitions of the data items and tasks in the plan (other than
the root plan) whose syntax is defined by either <task> or <data_item>.

12.1. The Operation LoadGuideline(G)

Parameters:
G isatext string having the syntax <guideline>

Definition:

1. Set RandomNumto areal value in the range 0 to 1 inclusive. We do not define
how this value is chosen but the intention is that it should be generated in a
pseudo-random manner.

2. Set the Exception flag to false and empty the Properties and Changes table.

3. Parse G asDir RootDef; ... Defn, where Dir has the syntax <directives> Root
has the syntax <plan>, and Def; ... Def,, are definitions of the data items and
tasks in the plan (other than the root plan) whose syntax is defined by either
<task> or <data_item>.

4. Select a“new” component identifier C (“new” meaning that C does not
already occur in the Properties table).

5. Perform the operation InstantiateTask(G, Root, C)

6. For each Def; in the set of components Def; ... Defy, if Def; isa<data item>
then perform InstantiateDatal tem(Def;). If Def; is a <task> then ignore it (the
instantiation of the root plan in step 2 will result in the instantiation of all the
other tasks in the guideline).

12.2. The Operation InstantiateTask(G,T, C)

Parameters:

G isatext string whose syntax is defined by <guideline> and which describes
the guideline we are loading.

T istext string whose syntax is defined by <task> and which describes the
task we are instantiating. T will be part of the guideline G.

C isacomponent identifier, which is to be used to identify the task T.

From the BNF for PROforma set out in 3 it can be seen that T must be of the form
TaskClass ‘::' NameAtt; ... Atty “end” TaskClass “.” where

TaskClassis one of “plan”, “decision”, “action”, or “enquiry”.
Name s the name of the task, whose syntax is defined by <name>

73

Att; ... Atty isthe definition of task’s attributes, whose syntax is defined by
either { <plan_attribute>} {<decision_attribute>} {<action_attribute>}
{<enquiry_attribute>} depending on the value of TaskClass.

As specified in Definition 1 we call atext string of the above form a Task Definition
for the task Name,

Definition:

74

1. ParseT asTaskClass‘::;’ NameAtt; ... Atty “end” TaskClass “.” where

a. TaskClassisone of “plan”, “decision”, “action”, or “enquiry”.

b. Nameisthe name of the task, whose syntax is defined by <name>

c. Att ... Atty isthe definition of task’s attributes, whose syntax is
defined by either { <plan_attribute>} {<decision_attribute>}
{<action_attribute>} {<enquiry_attribute>} depending on the value of
TaskClass.

. Add (C,class,ClassConst) to the Properties table where ClassConst is either

pl an,deci si on,acti on, or enqui ry depending on whether TaskClass

is respectively “plan”, “decision”, “action”, or “enquiry”.

. Add (C,state,dor mant) to the Properties table.

. For each Att; in the attribute list Att; ... Atty perform the operation

SetTaskAttribute(C, Att;). This operation is defined in 12.5.

. For each Att; having the syntax of <component> perform the operation

InstantiateComponent(G, C, Att;). This operation is defined in 112.3. Note that
only a plan has attributes of the form <component>.

12.3. The Operation InstantiateComponent(G, Ct, A).

Parameters:

A text string G whose syntax is defined by <guideline> and which describes
the guideline we are loading.

A component identifier Cr.

A text string A whose syntax is defined by <component >.

Definition:

1.

Parse A as “component” “::” Name Att; ... Att, where Name has the syntax
<task_name> and each Att; (1 £ i £ n) has the syntax <component_attribute>.

Find the Task Identifier Ca such that (Ca,name,Name) and
(Ca,parent_plan,Cy) are both in the Properties table. These rows will have
been created by the SetTaskAttribute Operation (112.5).

If the Properties table contains the row (Ca,cl ass,deci si on) or
(Cacl ass,acti on) then add therow (Ca,confirnmatory,true)tothe
Properties table otherwise add the row (Ca,conf i r mat or y f al se). Note

that this establishes a default value for theconf i r mat or y property which
may be overridden by the SetComponentAttribute operation.

For each Att; (1 £i £ N) perform the operation
SetComponentAttribute(Ca,Cr,Att;)

Let Ta be the task definition for task Name in guideline G. The meaning of
“Task Definition” is given in Definition 1, the context sensitive syntax of
PROforma guarantees that G will contain exactly one task definition for task
Name.

Perform the operation InstantiateTask(G, Ta, Ca).

12.4. The Operation SetComponentAttribute(C,Cp,A)

Parameters:

Cisatask Identifier.
Cp isatask identifier, which identifies the parent task of C.
Aisatext string of the form <component_attribute>.

Definition:

75

1. If Aisof the form ““schedule _constraint” “::” “completed” “(* Name “)”

then

Find the task identifier Ca such that the Properties Table contains the
rows (Ca , name, Name) and (Ca , parent_plan, Cp). These rows will
have been created by the SetTaskAttribute Operation (112.5).

If the Properties table contains arow (C,antecedent_tasks,<Ty,...,Tn>)
where <Ty,..., > IS a sequence of task identifiers then replace this row
with (C,antecedent_tasks,< T1,...TN ,CA>).

Otherwise add (C,antecedent_tasks,<Ca>) to the Properties table where
<Cp> is the sequence containing just Ca.

2. If Aisof theform “param value’” “::;” Name= E “;” where Nameisan
<atom> and E is an <expression> then

Create a new component identifier P

Add therows (P, class, par amet er), (P,expression,E) and
(P,name,Name) to the Properties table.

If the Properties table contains arow (C,parameters,<P4,...,Pn>) where
<P4,...,Pn> isasequence of text strings then replace this row with
(C,parameters,<P;,...,Py,P>).

Otherwise add (C,parameter_assignments,<P>) to the Properties table
where <P> is the sequence containing just P.

3. If Aisof theform “cycle repeat” “::” EU where E is an <expression>
and U isa<time unit> then and add (C,cycle interval,E)
(C,cycle_interval_unit ,U) to the Properties table.

4. If Aisof the form “autonomous’ “::” “ yes’ resp. “autonomous’ “::” “ no

and the Properties table does not contain the row (Ca,cl ass,enqui ry)
or (Ca,cl ass,pl an) then add therow (Ca,confirmatorytrue)
resp. (Ca,confirmatory,fal se)tothePropertiestable.

Note that the “autonomous’ keyword is ignored for enquiries and plans.

5. Otherwise add the row indicated by Table 1 below.

Form Of A Row Added To The Properties Table
“optional” “::” “yes’ “;” (C,optional,t r ue)
“optional” “::” “no” “;” (C,optiord,f al se)
“termina” “:” “yes’ “}” (Cterminal,t r ue)
“terminal” “::” “no” “;” (Ctermind,f al se)
“ltwh” “:” Np“ N2 “" N3 “” Ng “}7 (C,Iwth,<V1,V3,V3,V4>) where
(each N; having the syntax <integer>) V1,V2,V3,V, are the numeric values of
the integers N1,N2,N3,Na.
“number_of cycles’ “:;” N*;” (C,lwth,V) where V is the numeric
(N having the syntax <integer>) value of N.

76

| “cycle until” “:" E | (C,cycle until E)

Table 1 Rows Added By SetComponentAttribute

12.5. The Operation SetTaskAttribute(G,C,Att)

Parameters:

C isatask identifier that has previoudy been chosen for this task. In the case
of the root plan this identifier will have been chosen by the LoadGuideline
operation, for any other task it will have been chosen as aresult of performing
InstantiateTask (12.2) on its parent plan.

Att is atext string describing the attribute value to be set. The syntax of Att is
defined by either <generic_attribute> <plan_attribute>, <decision_attribute>,
<action_attribute>, or <enquiry_attribute>>,

Definition:

1.

If Att is of the form “component” “::” Name CompAtts where Name has the
syntax <task> and CompAitts has the syntax { <component_attribute>} then
a Creasteanew Task Identifier T
b. Add the row (T,name,Name) to the Properties table.
c. Add (T,parent_plan,C) to the Properties table.

Elseif Att begins with the reserved word “candidate” then perform the
operation |nstantiateCandidate(C,Att)

Elseif Att begins with the reserved word “source” then perform the operation
| nstantiateSource(C, Att)

Elself Att isof the form “parameter” “::” P “,”..." " Py “;” then:
a Parseeach Pjas
Name [“attributes’ [“type” “::” Type] [<generic_attribute _list>]]

where square brackets denote optional components, Name isa
<parameter_name> and Type, if present is a <data type>

b. Look for a component identifier Cp such that the Properties table
contains the rows (Cp,name,Name), (Cp,class,par anet er). If no such
identifier is found then create it and add those two rows.

c. If Typeis present then (Cp,type, Type) to the Properties table otherwise

add (Cp,typet ext) to the Properties table, where Cp is the component
identifier found or created in step b.

3 Or by all four of these if the attribute is a <generic_task_attribute> .

77

d. If a<generic_attribute list> is present and defines a caption Cap then
add (Cp,caption,Cap) to the Properties table, where Cp isthe

component identifier found or created in step b.

e. If the<generic_attribute list> is present and defines a description Desc
then add (Cp,description,De s ¢) to the Properties table, where Cp is the
component identifier found or created in step b.

5. Else add to the Properties table the rows specified in Table 2 below.

Form Of Att Row Added To The Properties Table
“caption” “::” Cap “;” (C,caption,Cap)
“description” “::” D “;” (C,definition, D)
“goa” “:" G 7 (C,god,G)

“precondition” P “::"%;”

(C,precondition, P)

“wait_condition” P “::"*;”

(C,wait_condition,P)

[“single’|“multiple’] “;”

“trigger” “:" T ") (C,trigger,T)

“postcondition” “::” P *;” (C,postcondition, P)

“abort” “7 AMY” (C,abort_condition,A)

“terminate” “::" T ¢} (Cterminate_condition,T)
“choice_mode” “:.” (C,choice_mode,M) where M is either

the constants si ngl e or the constant
nmul ti pl e asappropriate.

“" [*symbolic” | “numeric”] “;

<support_mode> = “ support_mode”

(C,support_mode,M) where M is either
the constant synbol i ¢ or the constant
nuner i ¢ asappropriate.

[procajure” “::” P 1] ;”

(C,procedure,P)

<context> = “context” “::” Con*“;”

(C,context,Con)

Table2 Rows Added PropertiesTable By SetTaskAttribute

12.6. The Operation InstantiateCandidate(D,Cand)

Parameters:

D is a component identifier identifying a decision.
Cand is atext string whose syntax is defined by <candidate> and which
describes a candidate of the decision D.

Definition:

1. PaseCand as“candidate” “::" Name “;" A;... Anywhere Nameisa
<candidate_name> and each A is a <candidate_attribute>.

78

Create a new component identifier C.
Add (C, class, candi dat e) to the Properties table.
Add (C, name, Name) to the Propertiestable.

If the Properties table containsarow (D, candidates, <C;, ...,Cn>) then
replace this row with (D, candidates, <Cjy,...,Cy, C>) otherwise add
(D,candidates,<C>) to the Properties table.

For each A; (where 1£i£n):
a. If Ajisan <argument> then perform the operation
InstantiateArgument(C,A;) as defined in 12.7.
b. Otherwise add arow to the Properties table as set out in below.

Form Of A; Row Added To The Properties Table
“caption” “::” Cap “;” (C,caption,Cap)
“description” :: D “}” (C,description, D)
“rule’ “:" E* None
“recommendation” “::” E“;” (Cand, recommendation, E)
<priority> = “priority” “::” N “;” where | (Cand, priority, V) where V is the numeric
N is an <integer> valueof N.

Table 3 Rows Added by the I nstantiateCandidate Operation

12.7. The Operation InstantiateArgument(C,A)

Parameters:

C isacomponent identifer identifying a candidate.

A isatext string with the syntax of <argument>, which defines an argument
of the candidate C.

Definition:

79

1.

Parse A as “argument” “::” S*” E, [“attributes’ [“name” “::” Name “;”]
[<generic_attribute list>]]“;” where square brackets denote optional
components, Sis a <support>, E is an <expression>, and Name, if present is
an <argument_name>.

Create a new component identifier Ca.
Add (Ca, class, ar gunent) to the Properties table.
If the properties table contains arow (C,arguments, <Cq, ..., Cn>) then replace

this row with (C,arguments, <Cy, ..., Cn, Ca>), otherwise add
(C,arguments,<Cx>) to the properties table.

. Add (Ca, support, V) to the properties table where V isf or , agai nst ,

confirm ng, excl udi ng orthe numeric value of Sdepending on

1 1] ti) {3

whether Sis “for”, “against”, “confirming”, “excluding” or an <integer>.
If Name was present then add (Ca, name, Name) to the Properties Table.

If the generic attribute list defines a caption Cap then add (Ca, caption, Cap) to

the Properties Table.

If If the generic attribute list defines a description desc then add (Ca,

| description, desc) to the Properties Table.

12.8. The Operation InstantiateSource(C,S)

Parameters:

C isatask identifier and identifies a decision or enquiry.
Sisatext string whose syntax is defined by <source>.

Definition:

. Parse Sas“source” “::” Name “;” Az ... Ay where Name isa<data name> and

Az ... Ay are<source attribute>s

. Create a new component identifier Cs.
. Add (Csg, class, sour ce) to the Properties table.

. Add (Cs, name, Name) to the Properties table.

If the Properties table containsarow (C, sources, <Cjy, ... , Cy>) then replace
this row with (C, sources, <C;, ... , Cn,Cs>) otherwise add (C, sources, <Cs>)
to the Properties table.

If there is no component identifier D such that the Properties table contains the
rows (D,name,Name) and (D, class, dat a_i t em) then create a new identifier
D and add those two rows to the Properties table.

. Add therow (Cs, data_item, D) to the Properties table where D is the

component identifier created or found in step 5 above.

. Foreach A (1 £i£N) add to the Properties table the row specified by Table 4

below.

Form Of A; | Row Added To The Properties Table |

80

“caption” “::” Cap “;” (C,caption,Cap)
“description” “::” D “;” (C,description, D)
“mandatory” “:.” “yes’ “}” (C,mandatory,t r ue)
“mandatory” “:.” “no” “;” (C,mandatory,f al se)
Table4 Rows Added By InstantiateSour ce
12.9. The Operation InstantiateDataltem(Def).

Parameters:
Def isatext string with the syntax

Definition:

1. ParseDef as“data’ “::" Name “type’ “::” Type “;"A; ... Ay “end” “data’ “;"
where Nameis a<data name>, Type isa<data type> and each A isa

<data_attribute> (for 1£ iEN).

2. Create a new component identifier C.

3. Addtherow (C, class, dat a_i t em) to the Propertiestable.

4. Add(C, name,Name) and (C, type, Type) to the Properties table.

5. Foreacheach A; (1£i£N) :

a. If A isof theform “warning_condition” “::” K “” E“;” whereK isa
<constant> and E is an <expression> then create a new component
identifier W and add the rows (W,name,K) and (W,condition,E) to the

Propertiestable.

b. Elseadd to the Properties table the row specified by Table 5 below.

Form Of A; Row Added To The Properties Table
“caption” “::” Cap “;” (C,caption,Cap)
“description” “::” D “;” (C,description, D)
“range’ “:." Ty, ..., Ty “;"for each i such (C,range, &/1, ...,Vn M) where, for each i

that 1£i£n, T; is a <textual _constant>.

such that 1£i£n, V; isT; with any
enclosing single or double quotes
removed.

“range” “::" Ny, ...,N, “;"for each i such
that 1£i£n, N; is a <number>.

(C,range, &1, ...V, i) where, for each i
such that 1£i£n, V; isthe numeric value
of N; .

81

“default_value” “::;” C “;” whereCisa
<constant>.

(C,default_vaue, V) where V is the vaue
of C.

“true value” “:" T “}”

(C,true value, T)

“fal%_value” “::” F “;11

(Cfadse vaue, F)

“mandatory_validation” “::" E *}”

(C,mandatory_validation, E)

“da.ivmion” “::77 E “;”

(C,derivation, E)

uunitn u::n U u;n

(C,unit, U)

Table 5 Rows Added By InstantiateDataltem

82

